Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Degree Bounded Spanning Trees

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

In this paper, we give a sufficient condition for a graph to have a degree bounded spanning tree. Let n ≥ 1, k ≥ 3, c ≥ 0 and G be an n-connected graph. Suppose that for every independent set \({S \subseteq V(G)}\) of cardinality n(k−1) + c + 2, there exists a vertex set \({X \subseteq S}\) of cardinality k such that the degree sum of vertices in X is at least |V(G)| − c −1. Then G has a spanning tree T with maximum degree at most \({k+\lceil c/n\rceil}\) and \({\sum_{v\in V(T)}\max\{d_T(v)-k,0\}\leq c}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bondy, J.A.: Longest paths and cycles in graphs with high degree, Research Report CORR 80–16. University of Waterloo, Waterloo (1980)

  2. Bondy, J.A.: Integrity in graph theory, The Theory and Applications of Graphs, pp. 117–125. Wiley, New York (1981)

  3. Bondy J.A., Murty U.S.R.: Graph Theory with Applications. Macmillan, Elsevier, London, New York (1976)

    Google Scholar 

  4. Caro Y., Krasikov I., Roddity Y.: On the largest tree of given maximum degree in a connected graph. J. Graph Theory 15, 7–13 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chvátal V., Erdős P.: A note on Hamilton circuits. Discrete Math. 2, 111–113 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ellingham M.N., Zha X.: Toughness, trees and walks. J. Graph Theory 33, 125–137 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kyaw A.: A sufficient condition for a graph to have a k-tree. Graphs Combin. 17, 113–121 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Neumann-Lara V., Rivera-Campo E.: Spanning trees with bounded degrees. Combinatorica 11, 55–61 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ore O.: Note on Hamilton circuits. Amer. Math. Monthly 67, 55 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  10. Rivera-Campo E.: An Ore-type condition for the existence of spanning trees with bounded degrees. Congr. Numer. 90, 19–32 (1992)

    MathSciNet  Google Scholar 

  11. Tsugaki M.: A note on a spanning 3-tree. Combinatorica 29, 127–129 (2009)

    Article  MathSciNet  Google Scholar 

  12. Tsugaki M., Yamashita T.: Spanning trees with few leaves. Graphs Combin. 23, 585–598 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Win S.: Existenz von Gerüsten mit vorgeschriebenem Maximalgrad in Graphen. Abh. Math. Sem. Univ. Hamburg 43, 263–267 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  14. Win S.: On a connection between the existence of k-trees and the toughness of a graph. Graphs Combin. 5, 201–205 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yamashita T.: On degree sum conditions for long cycles and cycles through specified vertices. Discrete Math. 308, 6584–6587 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Fujisawa.

Additional information

This paper is dedicated to Prof. H. Enomoto on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujisawa, J., Matsumura, H. & Yamashita, T. Degree Bounded Spanning Trees. Graphs and Combinatorics 26, 695–720 (2010). https://doi.org/10.1007/s00373-010-0941-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-010-0941-x

Keywords