Abstract
We show that the maximum number of ternary sequences of length n such that no two of them feature all the three symbol pairs in their coordinates is 2(n+o(n)). In fact, we present a far more general theorem about problems of a similar nature. We explore the connections of our results to those on zero-error capacity of graph families.
Similar content being viewed by others
References
Brightwell G., Cohen G., Fachini E., Fairthorne M., Körner J., Simonyi G., Tóth Á.: Permutation capacities of families of oriented infinite paths. SIAM J. Discrete Math. 2(24), 441–456 (2010)
Calderbank R., Frankl P., Graham R.L., Li W., Shepp L.: The Sperner capacity of the cyclic triangle for linear and nonlinear codes. J. Algebraic Combin. 2, 31–48 (1993)
Cohen G., Körner J., Simonyi G.: Zero-error capacities and very different sequences. In: Capocelli, R.M. (eds) Sequences: Combinatorics, Compression, Security and Transmission, pp. 144–155. Springer, New York (1988)
Csiszár I., Körner J.: On the capacity of the arbitrarily varying channel for maximum probability of error. Z. Wahrscheinlichkeitstheorie verw. Geb. 57, 87–101 (1981)
Csiszár I., Körner J.: Information Theory: Coding Theorems for Discrete Memoryless Systems. Academic Press, New York (1982)
Diestel R.: Graph Theory, 3rd edn. Springer, Berlin (2005)
Ellis, D., Friedgut, E., Pilpel, H.: Intersection theorems for permutations (to appear)
Erdős P., Ko C., Rado R.: Intersection theorems for systems of finite sets. Q. J. Math. Oxford Ser. 2 12, 313–320 (1961)
Füredi Z., Kantor I., Monti A., Sinaimeri B.: On reverse free codes and permutations. SIAM J. Discrete Math. 3(24), 964–978 (2010)
Gargano L., Körner J., Vaccaro U.: Sperner capacities. Graphs Comb. 9, 31–46 (1993)
Gargano L., Körner J., Vaccaro U.: Capacities: from information theory to extremal set theory. J. Comb. Theory Ser. A 68(2), 296–316 (1994)
Hahn, G., Tardif, C.: Graph homomorphisms: structure and symmetry. In: Graph Symmetry. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 497, pp. 107–166. Kluwer, Dordrecht (1997)
Körner J., Orlitsky A.: Zero-error information theory. IEEE Trans. Inform. Theory 44, 2207–2229 (1998)
Körner J., Simonyi G.: A Sperner-type theorem and qualitative independence. J. Comb. Theory Ser. A 59, 90–103 (1992)
Lovász L.: On the Shannon capacity of a graph. IEEE Trans. Inform. Theory 25, 1–7 (1979)
Marton K.: On the Shannon capacity of probabilistic graphs. J. Comb. Theory Ser. B 57, 183–195 (1993)
Nayak J., Rose K.: Graph capacities and zero-error transmission over compound channels. IEEE Trans. Inform. Theory 51(12), 4374–4378 (2005)
Scheinerman, E.R., Ullman, D.H.: Fractional Graph Theory. Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley, Chichester (1997)
Shannon C.E.: The zero-error capacity of a noisy channel. IRE Trans. Inform. Theory 2, 8–19 (1956)
Simonyi G.: On Witsenhausen’s zero-error rate for multiple sources. IEEE Trans. Inform. Theory 49(12), 3258–3261 (2003)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fachini, E., Körner, J. Forbiddance and Capacity. Graphs and Combinatorics 27, 495–503 (2011). https://doi.org/10.1007/s00373-010-0987-9
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00373-010-0987-9