Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Forbiddance and Capacity

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

We show that the maximum number of ternary sequences of length n such that no two of them feature all the three symbol pairs in their coordinates is 2(n+o(n)). In fact, we present a far more general theorem about problems of a similar nature. We explore the connections of our results to those on zero-error capacity of graph families.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brightwell G., Cohen G., Fachini E., Fairthorne M., Körner J., Simonyi G., Tóth Á.: Permutation capacities of families of oriented infinite paths. SIAM J. Discrete Math. 2(24), 441–456 (2010)

    Article  Google Scholar 

  2. Calderbank R., Frankl P., Graham R.L., Li W., Shepp L.: The Sperner capacity of the cyclic triangle for linear and nonlinear codes. J. Algebraic Combin. 2, 31–48 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cohen G., Körner J., Simonyi G.: Zero-error capacities and very different sequences. In: Capocelli, R.M. (eds) Sequences: Combinatorics, Compression, Security and Transmission, pp. 144–155. Springer, New York (1988)

    Google Scholar 

  4. Csiszár I., Körner J.: On the capacity of the arbitrarily varying channel for maximum probability of error. Z. Wahrscheinlichkeitstheorie verw. Geb. 57, 87–101 (1981)

    Article  MATH  Google Scholar 

  5. Csiszár I., Körner J.: Information Theory: Coding Theorems for Discrete Memoryless Systems. Academic Press, New York (1982)

    Google Scholar 

  6. Diestel R.: Graph Theory, 3rd edn. Springer, Berlin (2005)

    MATH  Google Scholar 

  7. Ellis, D., Friedgut, E., Pilpel, H.: Intersection theorems for permutations (to appear)

  8. Erdős P., Ko C., Rado R.: Intersection theorems for systems of finite sets. Q. J. Math. Oxford Ser. 2 12, 313–320 (1961)

    Article  Google Scholar 

  9. Füredi Z., Kantor I., Monti A., Sinaimeri B.: On reverse free codes and permutations. SIAM J. Discrete Math. 3(24), 964–978 (2010)

    Article  Google Scholar 

  10. Gargano L., Körner J., Vaccaro U.: Sperner capacities. Graphs Comb. 9, 31–46 (1993)

    Article  MATH  Google Scholar 

  11. Gargano L., Körner J., Vaccaro U.: Capacities: from information theory to extremal set theory. J. Comb. Theory Ser. A 68(2), 296–316 (1994)

    Article  MATH  Google Scholar 

  12. Hahn, G., Tardif, C.: Graph homomorphisms: structure and symmetry. In: Graph Symmetry. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 497, pp. 107–166. Kluwer, Dordrecht (1997)

  13. Körner J., Orlitsky A.: Zero-error information theory. IEEE Trans. Inform. Theory 44, 2207–2229 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Körner J., Simonyi G.: A Sperner-type theorem and qualitative independence. J. Comb. Theory Ser. A 59, 90–103 (1992)

    Article  MATH  Google Scholar 

  15. Lovász L.: On the Shannon capacity of a graph. IEEE Trans. Inform. Theory 25, 1–7 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  16. Marton K.: On the Shannon capacity of probabilistic graphs. J. Comb. Theory Ser. B 57, 183–195 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. Nayak J., Rose K.: Graph capacities and zero-error transmission over compound channels. IEEE Trans. Inform. Theory 51(12), 4374–4378 (2005)

    Article  MathSciNet  Google Scholar 

  18. Scheinerman, E.R., Ullman, D.H.: Fractional Graph Theory. Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley, Chichester (1997)

  19. Shannon C.E.: The zero-error capacity of a noisy channel. IRE Trans. Inform. Theory 2, 8–19 (1956)

    Article  MathSciNet  Google Scholar 

  20. Simonyi G.: On Witsenhausen’s zero-error rate for multiple sources. IEEE Trans. Inform. Theory 49(12), 3258–3261 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to János Körner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fachini, E., Körner, J. Forbiddance and Capacity. Graphs and Combinatorics 27, 495–503 (2011). https://doi.org/10.1007/s00373-010-0987-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-010-0987-9

Keywords