Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Recognizing Well Covered Graphs of Families with Special P 4-Components

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

A graph G is called well covered if every two maximal independent sets of G have the same number of vertices. In this paper we shall use the modular and primeval decomposition techniques to decide well coveredness of graphs such that, either all their P 4-connected components (in short, P 4-components) are separable or they belong to well known classes of graphs that, in some local sense, contain few P 4’s. In particular, we shall consider the class of cographs, P 4-reducible, P 4-sparse, extended P 4-reducible, extended P 4-sparse graphs, P 4-extendible graphs, P 4-lite graphs, and P 4-tidy graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baumann, S.: A linear algorithm for the homogeneous decomposition of graphs. Report No. M-9615, Zentrum Mathematik, Technische Universität München (1996)

  2. Caro Y.: Subdivisions, parity and well-covered graphs. J. Graph Theory 25, 85–94 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Caro Y., Sebö A., Tarsi M.: Recognizing greedy structures. J. Algorithms 20, 137–156 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chvátal V., Slater P.J.: A note on well-covered graphs. Ann. Discrete Math. 55, 179–182 (1993)

    Article  Google Scholar 

  5. Corneil D.G., Lerchs H., Stewart Burlingham L.: Complement reducible graphs. Discrete Appl. Math. 3, 163–174 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Corneil D.G., Perl Y., Stewart L.K.: Cographs: recognition, applications and algorithms. Congressus Numerantium 43, 249–258 (1984)

    MathSciNet  Google Scholar 

  7. Dean N., Zito J.: Well covered graphs and extendability. Discrete Math. 126, 67–80 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fradkin A.O.: On the well-coveredness of Cartesian products of graphs. Discrete Math. 309(1), 238–246 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Finbow A., Hartnell B., Nowakowski R.: A characterization of well-covered graphs of girth 5 or greater. J. Combin. Theory B 57, 44–68 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Giakoumakis V., Vanherpe J-M.: On extended P 4-reducible and extended P 4-sparse graphs. Theor. Comput. Sci. 180, 269–286 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Giakoumakis V., Roussel F., Thuillier H.: On P 4-tidy graphs. Discrete Math. Theor. Comput. Sci. 1, 17–41 (1997)

    MathSciNet  MATH  Google Scholar 

  12. Hammer P.L., Simeone B.: The splittance of a graph. Combinatorica 1, 275–284 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hóang, C.: Doctoral Dissertation. McGill University, Montreal (1985)

  14. Jamison B., Olariu S.: A new class of brittle graphs. Stud. Appl. Math. 81, 89–92 (1989)

    MathSciNet  MATH  Google Scholar 

  15. Jamison B., Olariu S.: P 4-reducible graphs, a class of uniquely tree representable graphs. Stud. Appl. Math. 81, 79–87 (1989)

    MathSciNet  MATH  Google Scholar 

  16. Jamison B., Olariu S.: On a unique tree representation for P 4-extendible graphs. Discrete Appl. Math. 34, 151–164 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jamison B., Olariu S.: A unique tree representation for P 4-sparse graphs. Discrete Appl. Math. 35, 115–129 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jamison B., Olariu S.: p-Components and the homogeneous decomposition of graphs. SIAM J. Discrete Math. 8, 448–463 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. McConnell R.M., Spinrad J.P.: Modular decomposition and transitive orientation. Discrete Math. 201, 189–241 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Prisner B., Topp J., Vestergaard P.D.: Well covered simplicial, chordal, and circular arc graphs. J. Graph Theory 21(2), 113–119 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Plummer M.D.: Some covering concepts in graphs. J. Combin. Theory 8, 91–98 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  22. Plummer M.D.: Well covered graphs: a survey. Quaestiones Math. 16, 253–287 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Randerath B., Vestergaard P.D.: Well covered graphs and factors. Discrete Appl. Math. 154, 1416–1428 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sankaranarayana R.S., Stewart L.K.: Complexity results for well-covered graphs. Networks 22, 247–262 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tankus D., Tarsi M.: The structure of well covered graphs and the complexity of their recognition problems. J. Combin. Theory B 69, 230–233 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tedder, M., Corneil, D.G., Habib, M., Paul, C.: Simple, linear-time modular decomposition. CoRR abs/0710.3901 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. P. de Mello.

Additional information

This research was partially supported by CNPq and FAPERJ.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, S., de Mello, C.P. & Morgana, A. Recognizing Well Covered Graphs of Families with Special P 4-Components. Graphs and Combinatorics 29, 553–567 (2013). https://doi.org/10.1007/s00373-011-1123-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-011-1123-1

Keywords