Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Colouring Clique-Hypergraphs of Circulant Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

A clique-colouring of a graph G is a colouring of the vertices of G so that no maximal clique of size at least two is monochromatic. The clique-hypergraph, \({\mathcal{H}(G)}\) , of a graph G has V(G) as its set of vertices and the maximal cliques of G as its hyperedges. A vertex-colouring of \({\mathcal{H}(G)}\) is a clique-colouring of G. Determining the clique-chromatic number, the least number of colours for which a graph G admits a clique-colouring, is known to be NP-hard. In this work, we establish that the clique-chromatic number of powers of cycles is equal to two, except for odd cycles of size at least five, that need three colours. For odd-seq circulant graphs, we show that their clique-chromatic number is at most four, and determine the cases when it is equal to two. Similar bounds for the chromatic number of these graphs are also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bacső G., Gravier S., Gyárfás A., Preissmann M., Sebő A.: Coloring the maximal cliques of graphs. SIAM J. Discrete Math. 17(3), 361–376 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bermond J.C., Peyrat C.: Induced subgraphs of the power of a cycle. SIAM Discrete Math. J. 2(4), 452–455 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bondy J.A., Locke S.C.: Triangle-free subgraphs of powers of cycles. Graphs Combin. 8(2), 109–118 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brandstädt A., Dragan F.F., Nicolai F.: LexBFS-orderings and powers of chordal graphs. Discrete Math. 171, 27–42 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brown J., Hoshino R.: Independence polynomials of circulants with an application to music. Discrete Math. 309(8), 2292–2304 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Campos C.N., de Mello C.P.: A result on the total colouring of powers of cycles. Discrete Appl. Math. 155(5), 585–597 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chebikin D.: Graph powers and k-ordered Hamiltonicity. Discrete Math. 308(15), 3220–3229 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chudnovsky, M., Robertson, N., Seymour, P., Thomas R.: The strong perfect graph theorem. Ann. Math. (2) 164(1), 51–229 (2006)

    Google Scholar 

  9. Codenotti B., Gerace I., Vigna S.: Hardness results and spectral techniques for combinatorial problems on circulant graphs. Linear Algebra Appl. 285, 123–142 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Défossez D.: Clique-coloring some classes of odd-hole-free graphs. J. Graph Theory 53(3), 233–249 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Défossez D.: Complexity of clique-coloring odd-hole-free graphs. J. Graph Theory 62(2), 139–156 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Duffus D., Sands B., Sauer N., Woodrow R.E.: Two-colouring all two-element maximal antichains. J. Combin. Theory Ser. A 57(1), 109–116 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gravier S., Hoàng C.T., Maffray F.: Coloring the hypergraph of maximal cliques of a graph with no long path. Discrete Math. 272, 285–290 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Heuberger C.: On planarity and colorability of circulant graphs. Discrete Math. 268, 153–169 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kratochvíl J., Tuza Z.: On the complexity of bicoloring clique hypergraphs of graphs. J. Algorithms 45(1), 40–54 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Krivelevich M., Nachmias A.: Colouring powers of cycles from random lists. Eur. J. Combin. 25(7), 961–968 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li D., Liu M.: Hadwiger’s conjecture for powers of cycles and their complements. Eur. J. Combin. 28(4), 1152–1155 (2007)

    Article  MATH  Google Scholar 

  18. Lin C., Lin J.J., Shyu T.W.: Isomorphic star decompositions of multicrowns and the power of cycles. Ars Combin. 53, 249–256 (1999)

    MathSciNet  MATH  Google Scholar 

  19. Locke S.C.: Further notes on: largest triangle-free subgraphs in powers of cycles. Ars Combin. 49, 65–77 (1998)

    MathSciNet  MATH  Google Scholar 

  20. Meidanis, J.: Edge coloring of cycle powers is easy (1998). http://www.ic.unicamp.br/~meidanis/. Unpublished manuscript, last visited 09/12/2012

  21. Muzychuk, M.E., Tinhofer, G.: Recognizing circulant graphs of prime order in polynomial time. Electron. J. Combin. 5, Research Paper 25, 28 (1998)

    Google Scholar 

  22. Mycielski J.: Sur le coloriage des graphs. Colloq. Math. 3, 161–162 (1955)

    MathSciNet  MATH  Google Scholar 

  23. Obradović N., Peters J., Ružić G.: Minimum chromaticity of circulant graphs. Discrete Math. 299, 288–296 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Obradović N., Peters J., Ružić G.: Efficient domination in circulant graphs with two chord lengths. Inform. Process. Lett. 102(6), 253–258 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Oriolo, G., Stauffer, G.: Clique-circulants and the stable set polytope of fuzzy circular interval graphs. Math. Program. 115(2, Ser. A), 291–317 (2008)

  26. Parsons T.D.: Circulant graph imbeddings. J. Combin. Theory Ser. B. 29(3), 310–320 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  27. Prowse A., Woodall D.R.: Choosability of powers of circuits. Graphs Combin. 19(1), 137–144 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Thomassen C.: Some remarks on Hajós’ conjecture. J. Combin. Theory Ser. B. 93(1), 95–105 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Valencia-Pabon M., Vera J.: Independence and coloring properties of direct products of some vertex-transitive graphs. Discrete Math. 306(18), 2275–2281 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. N. Campos.

Additional information

Partially supported by CNPq, FAPESP and FAPERJ.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campos, C.N., Dantas, S. & de Mello, C.P. Colouring Clique-Hypergraphs of Circulant Graphs. Graphs and Combinatorics 29, 1713–1720 (2013). https://doi.org/10.1007/s00373-012-1241-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-012-1241-4

Keywords