Abstract
For a proper edge coloring of a graph G the palette S(v) of a vertex v is the set of the colors of the incident edges. If S(u) ≠ S(v) then the two vertices u and v of G are distinguished by the coloring. A d-strong edge coloring of G is a proper edge coloring that distinguishes all pairs of vertices u and v with distance 1 ≤ d (u, v) ≤ d. The d-strong chromatic index \({\chi_{d}^{\prime}(G)}\) of G is the minimum number of colors of a d-strong edge coloring of G. Such colorings generalize strong edge colorings and adjacent strong edge colorings as well. We prove some general bounds for \({\chi_{d}^{\prime}(G)}\) , determine \({\chi_{d}^{\prime}(G)}\) completely for paths and give exact values for cycles disproving a general conjecture of Zhang et al. (Acta Math Sinica Chin Ser 49:703–708 2006)).
Similar content being viewed by others
References
Akbari S., Bidkhori H., Nosrati N.: r-Strong edge colorings of graphs. Discrete Math. 306, 3005–3010 (2006)
Balister P.N., Győri E., Lehel J., Schelp R.H.: Adjacent vertex distinguishing edge-colorings. SIAM J. Discrete Math. 21, 237–250 (2007)
Bazgan C., Harkat-Benhamdine A.H., Li H., Woźniak M.: On the vertex-distinguishing proper edge-colorings of graphs. J. Combin. Theory Ser. B 75, 288–301 (1999)
Bazgan C., Harkat-Benhamdine A.H., Li H., Woźniak M.: A note on the vertex-distinguishing proper coloring of graphs with large minimum degree. Discrete Math. 236, 37–42 (2001)
Bode, J.-P.: private communication
Burris, A.C.: Vertex-distinguishing edge colorings. Doctorate thesis, Memphis State University (1993)
Burris A.C., Schelp R.H.: Vertex-distinguishing proper edge-colorings. J. Graph Theory 26, 73–82 (1997)
Černý J., Horň M., Soták R.: Observability of a graph. Math. Slovaca 46, 21–31 (1996)
Edwards K., Horň M., Woźniak M.: On the neighbour-distinguishing index of a graph. Graphs Combin. 22, 341–350 (2006)
Favaron O., Li H., Schelp R.H.: Strong edge colorings of graphs. Discrete Math. 159, 103–109 (1996)
Frobenius, G.: Über Matrizen aus nichtnegativen Elementen. Sitzungsber. Preuss. Akad. Wiss. Berlin, 456–477 (1912)
Soták, R.: Invariants of regular graphs (in Slovak). Diploma thesis, Košice (1992)
Taczuk K., Woźniak M.: A note on the vertex-distinguishing index for some cubic graphs. Opuscula Math. 23, 223–229 (2004)
Tian J.J., Liu X., Zhang Z., Deng F.: Upper bounds on the D(β)-vertex-distinguishing edge-chromatic-numbers of graphs. LNCS 4489, 453–456 (2007)
Wang W., Wang Y.: Adjacent vertex distinguishing edge-colorings of graphs with smaller maximum average degree. J. Comb. Optim. 19, 471–485 (2010)
Zhang Z., Li J., Chen X. et al.: D(β)-vertex-distinguishing proper edge-coloring of graphs. Acta Math. Sinica Chin. Ser. 49, 703–708 (2006)
Zhang Z., Liu L., Wang J.: Adjacent strong edge coloring of graphs. Appl. Math. Lett. 15, 623–626 (2002)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kemnitz, A., Marangio, M. d-strong Edge Colorings of Graphs. Graphs and Combinatorics 30, 183–195 (2014). https://doi.org/10.1007/s00373-012-1251-2
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00373-012-1251-2