Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Bipartite Polyhedral Maps on Closed Surfaces are Distinguishing 3-Colorable with Few Exceptions

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

A map on a closed surface is said to be distinguishing k -colorable if it has a proper k-coloring such that no automorphism other than the identity map preserves the colors. We shall show that a polyhedral map with bipartite underlying graph is distinguishing 3-colorable if it has more than 18 vertices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Collins, K.L., Trenk, A.: The distinguishing chromatic number. Electron. J. Combin. 13(1), R16 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Fijavž, G., Negami, S., Sano, T.: 3-Connected planar graphs are 5-distinguishing colorable with two exceptions. Ars Mathematica Contemporanea 4(1), 165–175 (2011)

  3. Fijavž, G., Negami, S., Sano, T.: Distinguishing colorings of 3-connected planar graphs with five colors. Yokohama Math. J. 61, 57–65 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Negami, S.: Uniqueness and faithfulness of embedding of toroidal graphs. Discrete Math. 44, 161–180 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Negami, S., Sakurai, S.: Distinguishing chromatic numbers of planar graphs. Yokohama Math. J. 55, 179–188 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Negami, S.: The distinguishing numbers of graphs on closed surfaces. Discrete Math. 312, 973–991 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Negami, S., Noguchi, K., Tucker, T.: The distinguishing chromatic numbers of bipartite polyhedral maps and dual pairs on closed surfaces (in preparation)

  8. Sano, T., Negami, S.: The distinguishing chromatic numbers of triangulations on the projective plane. Congressus Numerantium 206, 131–137 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Sano, T.: The distinguishing chromatic number of triangulation on the sphere. Yokohama Math. J. 57, 77–87 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Tucker, T.W.: Distinguishing maps. Electron. J. Combin. 18(1), #P50 (2011)

  11. Tucker, T.W.: Distinguishing maps II: general cases. Electron. J. Combin. 20(2), #P50 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiya Negami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negami, S., Tucker, T.W. Bipartite Polyhedral Maps on Closed Surfaces are Distinguishing 3-Colorable with Few Exceptions. Graphs and Combinatorics 33, 1443–1450 (2017). https://doi.org/10.1007/s00373-017-1788-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-017-1788-1

Keywords