Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the Chromatic Number of (\(P_6\), Diamond)-Free Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

In this paper, we first show that every (\(P_6\), diamond, \(K_4\))-free graph is 6-colorable. We also give an example of a (\(P_6\), diamond, \(K_4\))-free graph G with \(\chi (G)\) \( = 6\). Further, we show that for every (\(P_6\), diamond)-free graph G, the chromatic number of G is upper bounded by a linear function of its clique number. This generalizes some known results in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Addario-Berry, L., Chudnovsky, M., Havet, F., Reed, B., Seymour, P.: Bisimplicial vertices in even-hole-free graphs. J. Combin. Theory Ser. B 98, 1119–1164 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bharathi, A.P., Choudum, S.A.: Colouring of \(P_2\cup P_3\)-free graphs. Graphs Combin. 34(1), 97–107 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blanche, A., Dabrowski, K. K., Johnson, M., Paulusma, D.: Hereditary graph Classes: when the complexities of colouring and clique cover coincide. arXiv:1607.06757v3 (2017)

  4. Brandstädt, A., Giakoumakis, V., Maffray, F.: Clique separator decomposition of hole-free and diamond-free graphs and algorithmic consequences. Disc. Appl. Math. 160, 471–478 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brandt, S.: Triangle-free graphs and forbidden subgraphs. Disc. Appl. Math. 120, 25–33 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Broersma, H.J., Golovach, P.A., Paulusma, D., Song, J.: Updating the complexity status of coloring graphs without a fixed induced linear forest. Theoret. Comput. Sci. 414, 9–19 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Choudum, S.A., Karthick, T.: Maximal cliques in \(P_2 \cup P_3, C_4\)-free graphs. Disc. Math. 310, 3398–3403 (2010)

    Article  MATH  Google Scholar 

  8. Choudum, S.A., Karthick, T., Shalu, M.A.: Perfect coloring and linearly \(\chi \)-bound \(P_6\)-free graphs. J. Graph Theory 54(4), 293–306 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chudnovsky, M., Goedgebeur, J., Schaudt, O., Zhong, M.: Obstructions for three-coloring graphs without induced paths on six vertices. Proc. SODA 2016, 1774–1783 (2016)

    Google Scholar 

  10. Chudnovsky, M., Seymour, P., Robertson, N., Thomas, R.: The strong perfect graph theorem. Ann. Math. 164(1), 51–229 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chudnovsky, M., Seymour, P., Robertson, N., Thomas, R.: \(K_4\)-free graphs with no odd holes. J. Combin. Theory Ser. B 100, 313–331 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chudnovsky, M., Spirkl, S., Zhong, M.: Four-coloring \(P_6\)-free graphs. I. Extending an excellent precoloring, arXiv:1802.02282v2 [math.CO] (2018)

  13. Chudnovsky, M., Spirkl, S., Zhong, M.: Four-coloring \(P_6\)-free graphs. II. Finding an excellent precoloring, arXiv:1802.02283v2 [math.CO] (2018)

  14. Dabrowski, K. K., Dross, F., Paulusma, D.: Colouring diamond-free graphs. In: 15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016), Rasmus Pagh Ed., LIPICS, Article No. 16; pp. 16:1–16:14

  15. Esperet, L., Lemoine, L., Maffray, F., Morel, M.: The chromatic number of \(P_5, K_4\)-free graphs. Disc. Math. 313, 743–754 (2013)

    Article  MATH  Google Scholar 

  16. Fan, G., Xu, B., Ye, T., Yu, X.: Forbidden subgraphs and \(3\)-colorings. SIAM J. Disc. Math. 28, 1226–1256 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Golovach, P.A., Johnson, M., Paulusma, D., Song, J.: A survey on the computational complexity of colouring graphs with forbidden subgraphs. J. Graph Theory 84, 331–363 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, Annals of Discrete Mathematics, 2nd edn. Elsevier, Amsterdam (2004)

    Google Scholar 

  19. Gravier, S., Hoàng, C.T., Maffray, F.: Coloring the hypergraph of maximal cliques of a graph with no long path. Disc. Math. 272, 285–290 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gyárfás, A.: Problems from the world surrounding perfect graphs. Zastosowania Matematyki Applicationes Mathematicae 19, 413–441 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Huang, S.: Improved complexity results on \(k\)-coloring \(P_t\)-free graphs. Eur. J. Combin. 51, 336–346 (2016)

    Article  MATH  Google Scholar 

  22. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., editors, Complexity of computer computations. Plenum, New York, pp. 85–103 (1972)

  23. Karthick, T.: Vertex coloring and cliques of certain \(P_6\)-free graphs and claw-free graphs. Ph.D. Thesis, IIT Madras (2010)

  24. Karthick, T., Maffray, F.: Vizing bound for the chromatic number on some graph classes. Graphs Combin. 32, 1447–1460 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kloks, T., Müller, H., Vušković, K.: Even-hole-free graphs that do not contain diamonds: a structure theorem and its consequences. J. Combin. Theory. Ser. B 99, 733–800 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kral, D., Kratochvil, J., Tuza, Z.S., Woeginger, G.J.: Complexity of coloring graphs without forbidden induced subgraphs. In: Proceedings of WG 2001, Lecture Notes in Computer Science 2204, 254–262 (2001)

  27. Mosca, R.: Independent sets in (\(P_6\), diamond)-free graphs. Disc. Math. Theoret. Comput. Sci. 11, 125–140 (2009)

    MATH  Google Scholar 

  28. Mycielski, J.: Sur le coloriage des graphes. Colloq. Math. 3, 161–162 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pyatkin, A.V.: Triangle-free \(2P_3\)-free graphs are \(4\)-colorable. Disc. Math. 313, 715–720 (2013)

    Article  MATH  Google Scholar 

  30. Randerath, B., Schiermeyer, I.: \(3\)-colorability \(\in \cal{P}\) for \(P_6\)-free graphs. Disc. Appl. Math. 136, 299–313 (2004)

    Article  MATH  Google Scholar 

  31. Randerath, B., Schiermeyer, I.: Vertex colouring and forbidden subgraphs: a survey. Graphs Combin. 20, 1–40 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Randerath, B., Schiermeyer, I., Tewes, M.: Three-colourability and forbidden subgraphs. II: polynomial algorithms. Disc. Math. 251, 137–153 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tucker, A.: Coloring perfect \((K_4 -e)\)-free graphs. J. Combin. Theory Ser. B 42, 313–318 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  34. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice-Hall, Englewood Cliffs, New Jersey (2000)

    Google Scholar 

Download references

Acknowledgements

The first author thanks Mathew C.Francis for his comments. The authors are grateful to the anonymous referees for their helpful suggestions and remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Karthick.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthick, T., Mishra, S. On the Chromatic Number of (\(P_6\), Diamond)-Free Graphs. Graphs and Combinatorics 34, 677–692 (2018). https://doi.org/10.1007/s00373-018-1905-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-018-1905-9

Keywords