Abstract
An equitable coloring is a proper coloring of a graph such that the sizes of the color classes differ by at most one. A graph G is equitably k-colorable if there exists an equitable coloring of G which uses k colors, each one appearing on either \(\lfloor |V(G)|/k \rfloor \) or \(\lceil |V(G)|/k \rceil \) vertices of G. In 1994, Fu conjectured that for any simple graph G, the total graph of G, T(G), is equitably k-colorable whenever \(k \ge \max \{\chi (T(G)), \Delta (G)+2\}\) where \(\chi (T(G))\) is the chromatic number of the total graph of G and \(\Delta (G)\) is the maximum degree of G. We investigate the list coloring analogue. List coloring requires each vertex v to be colored from a specified list L(v) of colors. A graph is k-choosable if it has a proper list coloring whenever vertices have lists of size k. A graph is equitably k-choosable if it has a proper list coloring whenever vertices have lists of size k, where each color is used on at most \(\lceil |V(G)|/k \rceil \) vertices. In the spirit of Fu’s conjecture, we conjecture that for any simple graph G, T(G) is equitably k-choosable whenever \(k \ge \max \{\chi _l(T(G)), \Delta (G)+2\}\) where \(\chi _l(T(G))\) is the list chromatic number of T(G). We prove this conjecture for all graphs satisfying \(\Delta (G) \le 2\) while also studying the related question of the equitable choosability of powers of paths and cycles.
Similar content being viewed by others
References
Behzad, M.: Graphs and their chromatic numbers, Ph.D. Thesis, Michigan State University (1965)
Borodin, O.V., Kostochka, A.V., Woodall, D.R.: List edge and list total colourings of multigraphs. J. Comb. Theory Ser. B 71, 184–204 (1997)
Brooks, R.L.: On coloring the nodes of a network. Proc. Camb. Philos. Soc. 37, 194–197 (1941)
Chen, B.-L., Lih, K.-W., Wu, P.-L.: Equitable coloring and the maximum degree. Eur. J. Comb. 15, 443–447 (1994)
Chunling, T., Xiaohui, L., Yuansheng, Y., Zhihe, L.: Equitable total coloring of \(C_m \square C_n\). Discret. Appl. Math. 157, 596–601 (2009)
Cranston, D.W.: Edge-choosability and total-choosability of planar graphs with no adjacent 3-cycles. Discuss. Math. Graph Theory 29(1), 163–178 (2009)
Erdős, P.: Problem 9. In: Fiedler, M. (ed.) Theory of Graphs and Its Applications. Proceedings Symposium, Smolenice, 1963. Publishing House Czechoslovak Acad. Sci, Prague, pp. 159 (1964)
Erdős, P., Rubin, A.L., Taylor, H.: Choosability in graphs. Cong. Numer. 26, 125–127 (1979)
Fu, H.-L.: Some results on equalized total coloring. Cong. Numer. 102, 111–119 (1994)
Furmańczyk, H.: Equitable total coloring of corona of cubic graphs. arxiv:1504.04869 submitted 2015
Gang, M.A., Ming, M.A.: The equitable chromatic number of some join graphs. Open J. Appl. Sci. 2, 96–99 (2012)
Gong, K., Zhang, Z., Wang, J.: Equitable total coloring of \(F_n \vee W_n\). Acta Mathematicae Applicante Sinica Engl. Ser. 25, 83–86 (2009)
Hajnál, A., Szemerédi, E.: Proof of a conjecture of Erdős. In: Rényi, A., Sós, V.T. (eds.) Combinatorial Theory and Its Applications, vol. II, pp. 601–623. North-Holland, Amsterdam, Netherlands (1970)
Janson, S., Ruciński, A.: The infamous upper tail. Random Struct. Algorithms 20, 317–342 (2002)
Kaul, H., Jacobson, S.H.: New global optima results for the Kauffman \(NK\) model: handling dependency. Math. Program. 108, 475–494 (2006). (Special issue on ‘Optimization under Uncertainty)
Kierstead, H.A., Kostochka, A.V.: Equitable versus nearly equitable coloring and the Chen-Lih-Wu conjecture. Combinatorica 2, 201–216 (2010)
Kierstead, H.A., Kostochka, A.V.: Equitable list coloring of graphs with bounded degree. J. Gr. Theory 74, 309–334 (2013)
Kim, S.-J., Park, B.: Counterexamples to the list square coloring conjecture. J. Gr. Theory 78, 239–247 (2015)
Kostochka, A.V., Woodall, D.R.: Choosability conjectures and multicircuits. Discret. Math. 240, 123–143 (2001)
Kostochka, A.V., Woodall, D.R.: Total choosability of multicircuits I. J. Gr. Theory 40, 26–43 (2002)
Kostochka, A.V., Woodall, D.R.: Total choosability of multicircuits II. J. Gr. Theory 40, 44–67 (2002)
Kostochka, A.V., Pelsmajer, M.J., West, D.B.: A list analogue of equitable coloring. J. Gr. Theory 44, 166–177 (2003)
Leidner, M.E.: A study of the total colorings of graphs, Ph.D. Thesis, University of Louisville (2012)
Li, Q., Bu, Y.: Equitable list coloring of planar graphs without 4- and 6-cycles. Discret. Math. 309, 280–287 (2009)
Li, R., Xu, B.: Edge choosability and total choosability of planar graphs with no 3-cycles adjacent 4-cycles. Discret. Math. 311, 2158–2163 (2011)
Lih, K.-W.: The equitable coloring of graphs. In: Du, D.-Z., Pardalos, P. (eds.) Handbook of Combinatorial Optimization, vol. III, pp. 543–566. Kluwer, Dordrecht (1998)
Lih, K.-W., Wu, P.-L.: On equitable coloring of bipartite graphs. Discret. Math. 151, 155–160 (1996)
Lu, Q., Miao, Z., Wang, Y.: Sufficient conditions for a planar graph to be list edge \(\Delta \)-colorable and list totally \((\Delta +1)\)-colorable. Discret. Math. 313, 575–580 (2013)
Meyer, W.: Equitable coloring. Am. Math. Mon. 80, 920–922 (1973)
Mudrock, J.: On the list coloring problem and its equitable variants, Ph.D. Thesis, Illinois Institute of Technology (2018)
Nakprasit, K.: Personal Communication (2002)
Ohba, K.: On chromatic-choosable graphs. J. Gr. Theory 40(2), 130–135 (2002)
Pemmaraju, S.V.: Equitable colorings extend Chernoff–Hoeffding bounds. In: Proceedings of the 5th International Workshop on Randomization and Approximation Techniques in Computer Science (APPROX-RANDOM 2001), pp. 285–296 (2001)
Prowse, A., Woodall, D.R.: Choosability of powers of circuits. Gr. Comb. 19, 137–144 (2003)
Tucker, A.: Perfect graphs and an application to optimizing municipal services. SIAM Rev. 15, 585–590 (1973)
Vizing, V.G.: Some unsolved problems in graph theory (Russian). Ups. Mat. Nauk. 23, 117–134 (1968). English Translation in Russian Math. Surveys 23, 125–141 (1968)
Vizing, V.G.: Coloring the vertices of a graph in prescribed colors. Diskret. Analiz. no. 29, Metody Diskret. Anal. v Teorii Kodovi Skhem 101, 3–10 (1976)
Wang, W.: Equitable total coloring of graphs with maximum degree 3. Gr. Comb. 18, 677–685 (2002)
Wang, H., Liu, B., Zhang, X., Wu, L., Gao, H.: List edge and list total coloring of planar graphs with maximum degree 8. J. Comb. Optim. 32, 188–197 (2016)
West, D.B.: Introduction to Graph Theory. Prentice Hall, Upper Saddle River, NJ (2001)
Yap, H.P., Zhang, Y.: The equitable \(\Delta \)-coloring conjecture holds for outerplanar graphs. Bull. Inst. Acad. Sinica 25, 143–149 (1997)
Zhang, Z., Wang, W., Bau, S., Li, J.: On the equitable total colorings of some join graphs. J. Inf. Comput. Sci. 2, 829–834 (2005)
Zhang, X., Wu, J.-L.: On equitable and equitable list colorings of series-parallel graphs. Discret. Math. 311, 800–803 (2011)
Zhu, J., Bu, Y.: Equitable list coloring of planar graphs without short cycles. Theor. Comput. Sci. 407, 21–28 (2008)
Zhu, J., Bu, Y.: Equitable and equitable list colorings of graphs. Theor. Comput. Sci. 411, 3873–3876 (2010)
Zhu, J., Bu, Y., Min, X.: Equitable list-coloring for \(C_5\)-free plane graphs without adjacent triangles. Gr. Comb. 31, 795–804 (2015)
Author information
Authors and Affiliations
Corresponding author
About this article
Cite this article
Kaul, H., Mudrock, J.A. & Pelsmajer, M.J. Total Equitable List Coloring. Graphs and Combinatorics 34, 1637–1649 (2018). https://doi.org/10.1007/s00373-018-1965-x
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00373-018-1965-x