Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Total Equitable List Coloring

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

An equitable coloring is a proper coloring of a graph such that the sizes of the color classes differ by at most one. A graph G is equitably k-colorable if there exists an equitable coloring of G which uses k colors, each one appearing on either \(\lfloor |V(G)|/k \rfloor \) or \(\lceil |V(G)|/k \rceil \) vertices of G. In 1994, Fu conjectured that for any simple graph G, the total graph of G, T(G), is equitably k-colorable whenever \(k \ge \max \{\chi (T(G)), \Delta (G)+2\}\) where \(\chi (T(G))\) is the chromatic number of the total graph of G and \(\Delta (G)\) is the maximum degree of G. We investigate the list coloring analogue. List coloring requires each vertex v to be colored from a specified list L(v) of colors. A graph is k-choosable if it has a proper list coloring whenever vertices have lists of size k. A graph is equitably k-choosable if it has a proper list coloring whenever vertices have lists of size k, where each color is used on at most \(\lceil |V(G)|/k \rceil \) vertices. In the spirit of Fu’s conjecture, we conjecture that for any simple graph G, T(G) is equitably k-choosable whenever \(k \ge \max \{\chi _l(T(G)), \Delta (G)+2\}\) where \(\chi _l(T(G))\) is the list chromatic number of T(G). We prove this conjecture for all graphs satisfying \(\Delta (G) \le 2\) while also studying the related question of the equitable choosability of powers of paths and cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Behzad, M.: Graphs and their chromatic numbers, Ph.D. Thesis, Michigan State University (1965)

  2. Borodin, O.V., Kostochka, A.V., Woodall, D.R.: List edge and list total colourings of multigraphs. J. Comb. Theory Ser. B 71, 184–204 (1997)

    Article  MathSciNet  Google Scholar 

  3. Brooks, R.L.: On coloring the nodes of a network. Proc. Camb. Philos. Soc. 37, 194–197 (1941)

    Article  Google Scholar 

  4. Chen, B.-L., Lih, K.-W., Wu, P.-L.: Equitable coloring and the maximum degree. Eur. J. Comb. 15, 443–447 (1994)

    Article  MathSciNet  Google Scholar 

  5. Chunling, T., Xiaohui, L., Yuansheng, Y., Zhihe, L.: Equitable total coloring of \(C_m \square C_n\). Discret. Appl. Math. 157, 596–601 (2009)

    Article  Google Scholar 

  6. Cranston, D.W.: Edge-choosability and total-choosability of planar graphs with no adjacent 3-cycles. Discuss. Math. Graph Theory 29(1), 163–178 (2009)

    Article  MathSciNet  Google Scholar 

  7. Erdős, P.: Problem 9. In: Fiedler, M. (ed.) Theory of Graphs and Its Applications. Proceedings Symposium, Smolenice, 1963. Publishing House Czechoslovak Acad. Sci, Prague, pp. 159 (1964)

  8. Erdős, P., Rubin, A.L., Taylor, H.: Choosability in graphs. Cong. Numer. 26, 125–127 (1979)

    MATH  Google Scholar 

  9. Fu, H.-L.: Some results on equalized total coloring. Cong. Numer. 102, 111–119 (1994)

    MathSciNet  MATH  Google Scholar 

  10. Furmańczyk, H.: Equitable total coloring of corona of cubic graphs. arxiv:1504.04869 submitted 2015

  11. Gang, M.A., Ming, M.A.: The equitable chromatic number of some join graphs. Open J. Appl. Sci. 2, 96–99 (2012)

  12. Gong, K., Zhang, Z., Wang, J.: Equitable total coloring of \(F_n \vee W_n\). Acta Mathematicae Applicante Sinica Engl. Ser. 25, 83–86 (2009)

    Article  Google Scholar 

  13. Hajnál, A., Szemerédi, E.: Proof of a conjecture of Erdős. In: Rényi, A., Sós, V.T. (eds.) Combinatorial Theory and Its Applications, vol. II, pp. 601–623. North-Holland, Amsterdam, Netherlands (1970)

  14. Janson, S., Ruciński, A.: The infamous upper tail. Random Struct. Algorithms 20, 317–342 (2002)

    Article  MathSciNet  Google Scholar 

  15. Kaul, H., Jacobson, S.H.: New global optima results for the Kauffman \(NK\) model: handling dependency. Math. Program. 108, 475–494 (2006). (Special issue on ‘Optimization under Uncertainty)

    Article  MathSciNet  Google Scholar 

  16. Kierstead, H.A., Kostochka, A.V.: Equitable versus nearly equitable coloring and the Chen-Lih-Wu conjecture. Combinatorica 2, 201–216 (2010)

    Article  MathSciNet  Google Scholar 

  17. Kierstead, H.A., Kostochka, A.V.: Equitable list coloring of graphs with bounded degree. J. Gr. Theory 74, 309–334 (2013)

    Article  MathSciNet  Google Scholar 

  18. Kim, S.-J., Park, B.: Counterexamples to the list square coloring conjecture. J. Gr. Theory 78, 239–247 (2015)

    Article  MathSciNet  Google Scholar 

  19. Kostochka, A.V., Woodall, D.R.: Choosability conjectures and multicircuits. Discret. Math. 240, 123–143 (2001)

    Article  MathSciNet  Google Scholar 

  20. Kostochka, A.V., Woodall, D.R.: Total choosability of multicircuits I. J. Gr. Theory 40, 26–43 (2002)

    Article  MathSciNet  Google Scholar 

  21. Kostochka, A.V., Woodall, D.R.: Total choosability of multicircuits II. J. Gr. Theory 40, 44–67 (2002)

    Article  MathSciNet  Google Scholar 

  22. Kostochka, A.V., Pelsmajer, M.J., West, D.B.: A list analogue of equitable coloring. J. Gr. Theory 44, 166–177 (2003)

    Article  MathSciNet  Google Scholar 

  23. Leidner, M.E.: A study of the total colorings of graphs, Ph.D. Thesis, University of Louisville (2012)

  24. Li, Q., Bu, Y.: Equitable list coloring of planar graphs without 4- and 6-cycles. Discret. Math. 309, 280–287 (2009)

    Article  MathSciNet  Google Scholar 

  25. Li, R., Xu, B.: Edge choosability and total choosability of planar graphs with no 3-cycles adjacent 4-cycles. Discret. Math. 311, 2158–2163 (2011)

    Article  MathSciNet  Google Scholar 

  26. Lih, K.-W.: The equitable coloring of graphs. In: Du, D.-Z., Pardalos, P. (eds.) Handbook of Combinatorial Optimization, vol. III, pp. 543–566. Kluwer, Dordrecht (1998)

    MATH  Google Scholar 

  27. Lih, K.-W., Wu, P.-L.: On equitable coloring of bipartite graphs. Discret. Math. 151, 155–160 (1996)

    Article  MathSciNet  Google Scholar 

  28. Lu, Q., Miao, Z., Wang, Y.: Sufficient conditions for a planar graph to be list edge \(\Delta \)-colorable and list totally \((\Delta +1)\)-colorable. Discret. Math. 313, 575–580 (2013)

    Article  MathSciNet  Google Scholar 

  29. Meyer, W.: Equitable coloring. Am. Math. Mon. 80, 920–922 (1973)

    Article  MathSciNet  Google Scholar 

  30. Mudrock, J.: On the list coloring problem and its equitable variants, Ph.D. Thesis, Illinois Institute of Technology (2018)

  31. Nakprasit, K.: Personal Communication (2002)

  32. Ohba, K.: On chromatic-choosable graphs. J. Gr. Theory 40(2), 130–135 (2002)

    Article  MathSciNet  Google Scholar 

  33. Pemmaraju, S.V.: Equitable colorings extend Chernoff–Hoeffding bounds. In: Proceedings of the 5th International Workshop on Randomization and Approximation Techniques in Computer Science (APPROX-RANDOM 2001), pp. 285–296 (2001)

  34. Prowse, A., Woodall, D.R.: Choosability of powers of circuits. Gr. Comb. 19, 137–144 (2003)

    Article  MathSciNet  Google Scholar 

  35. Tucker, A.: Perfect graphs and an application to optimizing municipal services. SIAM Rev. 15, 585–590 (1973)

    Article  MathSciNet  Google Scholar 

  36. Vizing, V.G.: Some unsolved problems in graph theory (Russian). Ups. Mat. Nauk. 23, 117–134 (1968). English Translation in Russian Math. Surveys 23, 125–141 (1968)

    Article  MathSciNet  Google Scholar 

  37. Vizing, V.G.: Coloring the vertices of a graph in prescribed colors. Diskret. Analiz. no. 29, Metody Diskret. Anal. v Teorii Kodovi Skhem 101, 3–10 (1976)

  38. Wang, W.: Equitable total coloring of graphs with maximum degree 3. Gr. Comb. 18, 677–685 (2002)

    Article  MathSciNet  Google Scholar 

  39. Wang, H., Liu, B., Zhang, X., Wu, L., Gao, H.: List edge and list total coloring of planar graphs with maximum degree 8. J. Comb. Optim. 32, 188–197 (2016)

    Article  MathSciNet  Google Scholar 

  40. West, D.B.: Introduction to Graph Theory. Prentice Hall, Upper Saddle River, NJ (2001)

    Google Scholar 

  41. Yap, H.P., Zhang, Y.: The equitable \(\Delta \)-coloring conjecture holds for outerplanar graphs. Bull. Inst. Acad. Sinica 25, 143–149 (1997)

    MATH  Google Scholar 

  42. Zhang, Z., Wang, W., Bau, S., Li, J.: On the equitable total colorings of some join graphs. J. Inf. Comput. Sci. 2, 829–834 (2005)

    Google Scholar 

  43. Zhang, X., Wu, J.-L.: On equitable and equitable list colorings of series-parallel graphs. Discret. Math. 311, 800–803 (2011)

    Article  MathSciNet  Google Scholar 

  44. Zhu, J., Bu, Y.: Equitable list coloring of planar graphs without short cycles. Theor. Comput. Sci. 407, 21–28 (2008)

    Article  MathSciNet  Google Scholar 

  45. Zhu, J., Bu, Y.: Equitable and equitable list colorings of graphs. Theor. Comput. Sci. 411, 3873–3876 (2010)

    Article  MathSciNet  Google Scholar 

  46. Zhu, J., Bu, Y., Min, X.: Equitable list-coloring for \(C_5\)-free plane graphs without adjacent triangles. Gr. Comb. 31, 795–804 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Mudrock.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaul, H., Mudrock, J.A. & Pelsmajer, M.J. Total Equitable List Coloring. Graphs and Combinatorics 34, 1637–1649 (2018). https://doi.org/10.1007/s00373-018-1965-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-018-1965-x

Keywords

Mathematics Subject Classification