Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Prime 3-Uniform Hypergraphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Given a 3-uniform hypergraph H, a subset M of V(H) is a module of H if for each \(e\in E(H)\) such that \(e\cap M\ne \emptyset\) and \(e\setminus M\ne \emptyset\), there exists \(m\in M\) such that \(e\cap M=\{m\}\) and for every \(n\in M\), we have \((e\setminus \{m\})\cup \{n\}\in E(H)\). For example, \(\emptyset\), V(H) and \(\{v\}\), where \(v\in V(H)\), are modules of H, called trivial. A 3-uniform hypergraph is prime if all its modules are trivial. Given a prime 3-uniform hypergraph, we study its prime, 3-uniform and induced subhypergraphs. Our main result is: given a prime 3-uniform hypergraph H, with \(|V(H)|\ge 4\), there exist \(v,w\in V(H)\) such that \(H-\{v,w\}\) is prime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and material (data transparency)

Not applicable.

Code availability (software application or custom code)

Not applicable.

References

  1. Bonizzoni, P., Della Vedova, G.: An algorithm for the modular decomposition of hypergraphs. J. Algorithms 32, 65–86 (1999)

    Article  MathSciNet  Google Scholar 

  2. Boudabbous, Y., Ille, P., Jouve, B., Salhi, A.: Critically twin primitive 2-structures. Graphs Combin. 31, 1223–1247 (2015)

    Article  MathSciNet  Google Scholar 

  3. Boussaïri, A., Chergui, B., Ille, P., Zaidi, M.: 3-uniform hypergraphs: modular decomposition and realization by tournaments. Contrib. Discrete Math. 15, 121–153 (2020)

    MathSciNet  MATH  Google Scholar 

  4. Boussaïri, A., Ille, P., Lopez, G., Thomassé, S.: The \(C_{3}\)-structure of the tournaments. Discrete Math. 277, 29–43 (2004)

    Article  MathSciNet  Google Scholar 

  5. Burley, M., Uhry, J.P.: Parity graphs. Ann. Discrete Math. 16, 1–26 (1982)

    MathSciNet  MATH  Google Scholar 

  6. Chein, M., Habib, M., Maurer, M.C.: Partitive hypergraphs. Discrete Math. 37, 35–50 (1981)

    Article  MathSciNet  Google Scholar 

  7. Ehrenfeucht, A., Harju, T., Rozenberg, G.: The Theory of 2-Structures. A Framework for Decomposition and Transformation of Graphs. World Scientific, Singapore (1999)

    Book  Google Scholar 

  8. Ehrenfeucht, A., Rozenberg, G.: Primitivity is hereditary for 2-structures. Theor. Comput. Sci. 70, 343–358 (1990)

    Article  MathSciNet  Google Scholar 

  9. Haglin, D., Wolf, M.: On convex subsets in tournaments. SIAM J. Discrete Math. 9, 63–70 (1996)

    Article  MathSciNet  Google Scholar 

  10. Ille, P.: Indecomposable graphs. Discrete Math. 173, 71–78 (1997)

    Article  MathSciNet  Google Scholar 

  11. Sayar, M.Y.: Partially critical indecomposable tournaments and partially critical supports. Contrib. Discrete Math. 6, 52–76 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Schmerl, J.H., Trotter, W.T.: Critically indecomposable partially ordered sets, graphs, tournaments and other binary relational structures. Discrete Math. 113, 191–205 (1993)

    Article  MathSciNet  Google Scholar 

  13. Spinrad, J.: P4-trees and substitution decomposition. Discrete Appl. Math. 39, 263–291 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank both referees for their constructive suggestions that allow for notable improvements to the manuscript.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Ille.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boussaïri, A., Chergui, B., Ille, P. et al. Prime 3-Uniform Hypergraphs. Graphs and Combinatorics 37, 2737–2760 (2021). https://doi.org/10.1007/s00373-021-02391-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-021-02391-w

Keywords

Mathematics Subject Classification