Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Partitioning Planar Graphs without 4-Cycles and 6-Cycles into a Linear Forest and a Forest

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Let \(G=(V(G), E(G))\) be a graph and \({\mathcal {G}}_i\) be a class of graphs for each \(i\in [k]\). A \(({\mathcal {G}}_1,\ldots , {\mathcal {G}}_k)\)-partition of G is a partition of V(G) into k sets \(V_1,\ldots , V_k\) such that, for each \(j\in [k]\), the graph \(G[V_j]\) induced by \(V_j\) is a graph in \({\mathcal {G}}_j\). In this paper, we prove that every planar graph without 4-cycles and 6-cycles admits an \(({\mathcal {F}}_2, {\mathcal {F}})\)-partition. As a corollary, V(G) can be partitioned into two sets \(V_1\) and \(V_2\) such that \(V_1\) induces a linear forest and \(V_2\) induces a forest if G is a planar graph without 4-cycles and 6-cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Appel, K., Haken, W.: Every planar map is four colorable. I. Discharging. Illinois J. Math. 21(3), 429–490 (1977)

    MathSciNet  MATH  Google Scholar 

  2. Appel, K., Haken, W., Koch, J.: Every planar map is four colorable. II. Reducibility. Illinois J. Math. 21(3), 491–567 (1977)

    MathSciNet  MATH  Google Scholar 

  3. Borodin, O.V.: A proof of B. Grnbaums conjecture on the acyclic \(5\)-colorability of planar graphs. Dokl. Akad. Nauk SSSR 231(1), 18–20 (1976)

    MathSciNet  Google Scholar 

  4. Borodin, O.V., Glebov, A.N.: On the partition of a planar graph of girth \(5\) into an empty and an acyclic subgraph. Diskretn. Anal. Issled. Oper. Ser. 1 8(4), 34–53 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Borodin, O.V., Kostochka, A.V.: Defective 2-colorings of sparse graphs. J. Combin. Theory Ser. B 104, 72–80 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cho, E.K., Choi, I., Park, B.: Partitioning planar graphs without 4-cycles and 5-cycles into bounded degree forests. Discrete Math. 344, 112172 (2021)

  7. Choi, H., Choi, I., Jeong, J., Suh, G.: \((1, k)\)-coloring of graphs with girth at least five on a surface. J. Graph Theory 84(4), 521–535 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Choi, I., Yu, G., Zhang, X.: Planar graphs with girth at least \(5\) are \((3, 4)\)-colorable. Discrete Math. 342(12), 111577 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohen-Addad, V., Hebdige, M., Král, D., Li, Z., Salgado, E.: Steinberg’s conjecture is false. J. Combin. Theory Ser. B 122, 452–456 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cowen, L.J., Cowen, R.H., Woodall, D.R.: Defective colorings of graphs in surfaces: partitions into subgraphs of bounded valency. J. Graph Theory 10(2), 187–195 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dross, F., Montassier, M., Pinlou, A.: Partitioning a triangle-free planar graph into a forest and a forest of bounded degree. Eur. J. Combin. 66, 81–94 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified NP-complete graph problems. Theor. Comput. Sci. 1, 237–267 (1976)

  13. Grötzsch, H.: Ein dreifarbensatz für dreikreisfreienetze auf der kugel. Math.-Nat. Reihe 8, 109–120 (1959)

    Google Scholar 

  14. Jensen, T., Toft, B.: Graph Coloring Problems. John Wily and Sons, New York (1995)

  15. Liu, L., Lv, J.: Every planar graph without 4-cycles and 5-cycles is (2, 6)-colorable. Bull. Malays. Math. Sci. Soc. 43, 2493–2507 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Poh, K.: On the linear vertex-arboricity of a plane graph. J. Graph Theory 14(1), 73–75 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sittitrai, P., Nakprasit, K.: Defective 2-colorings of planar graphs without \(4\)-cycles and \(5\)-cycles. Discrete Math. 341(8), 2142–2150 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Steinberg, R.: The state of the three color problem. Quo Vadis, Graph Theory?,. Ann. Discrete Math. 55, 211–248 (1993)

    Article  MATH  Google Scholar 

  19. Wang, Y., Xu, J.: Planar graphs with cycles of length neither 4 nor 6 are \((2, 0, 0)\)-colorable. Inf. Proc. Lett. 113(18), 659–663 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their comments which improved the original manuscript. This work is supported by the Science and Technology Project of Guangxi (Guike AD21220114), National Natural Science Foundation of China (Nos. 12261094, 12161010 and 11861069), and Youth Science Foundation of Guangxi (No.2019JJB110007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziwen Huang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Huang, Z. & Lv, JB. Partitioning Planar Graphs without 4-Cycles and 6-Cycles into a Linear Forest and a Forest. Graphs and Combinatorics 39, 10 (2023). https://doi.org/10.1007/s00373-022-02605-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00373-022-02605-9

Keywords

Mathematics Subject Classification