Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Intercomparison and validation of snow albedo parameterization schemes in climate models

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Snow albedo is known to be crucial for heat exchange at high latitudes and high altitudes, and is also an important parameter in General Circulation Models (GCMs) because of its strong positive feedback properties. In this study, seven GCM snow albedo schemes and a multiple linear regression model were intercompared and validated against 59 years of in situ data from Svalbard, the French Alps and six stations in the former Soviet Union. For each site, the significant meteorological parameters for modeling the snow albedo were identified by constructing the 95% confidence intervals. The significant parameters were found to be: temperature, snow depth, positive degree day and a dummy of snow depth, and the multiple linear regression model was constructed to include these. Overall, the intercomparison showed that the modeled snow albedo varied more than the observed albedo for all models, and that the albedo was often underestimated. In addition, for several of the models, the snow albedo decreased at a faster rate or by a greater magnitude during the winter snow metamorphosis than the observed albedo. Both the temperature dependent schemes and the prognostic schemes showed shortcomings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aoki T, Hachikubo A, Hori M (2003) Effects of snow physical parameters on shortwave broadband albedos. J Geophys Res 108(D19)

    Article  Google Scholar 

  • Baker DG, Ruschy DL, Wall DB (1990) The albedo decay of prairie snows. J Appl Meteorol – Notes and Correspondence 29:179–187

    Article  Google Scholar 

  • Baker DG, Skaggs RH, Ruschy DL (1991) Snow depth required to mask the underlying surface. J Appl Meteorol – Notes and Correspondence) 30:387–392

    Article  Google Scholar 

  • Betts AK, Ball JH (1997) Albedo over the Boreal Forest. J Geophys Res 102(D24):28901–28909

    Article  Google Scholar 

  • Bonan GB, Oleson KW, Vertenstein M, Levis S, Zeng X, Dai Y, Dickinson RE, Yang Z-L (2002) The land surface climatology of the community land model coupled to the NCAR community climate Model. J Climate 15:3123–3149

    Article  Google Scholar 

  • Boone A, Etchevers P (2001) An intercomparison of three snow schemes of varying complexity coupled to the same land surface model: local-scale evaluation at an alpine site. J Hydrometeorol 2:374–394

    Article  Google Scholar 

  • Brock BW, Willis IC, Sharp MJ (2000) Measurement and parameterization of albedo variations at Haut Glacier d’Arolla, Switzerland. J Glaciol 46(155)

    Google Scholar 

  • Douville H, Royer J-F, Mahfouf J-F (1995) A new snow parameterization for the Météo France climate model. Climate Dyn 12:21–35

    Article  Google Scholar 

  • Essery R, Martin E, Douville H, Fernández A, Brun E (1999) A comparison of four snow models using observations from an alpine site. Climate Dyn 15:583–593

    Article  Google Scholar 

  • Essery R, Best M, Cox P (2001) MOSES 2.2 Technical documentation. Technical report, Hadley Centre, Met Office, UK

  • Førland EJ, Allerup P, Dahlström B, Elomaa E, Jónsson T, Madsen H, Perälä J, Rissanen P, Vedin H, Vejen F (1996) Report No. 24/96: manual for operational correction of nordic precipitation data. Norwegian Meteorological Institute

  • Gerland S, Winther J-G, Ørbæk JB, Liston GE, Øritsland NA, Blanco A, Ivanov B (1999) Physical and optical properties of snow covering arctic tundra on Svalbard. Hydrol Process 13:2331–2343

    Article  Google Scholar 

  • Gerland S, Liston GE, Winther J-G, Ørbæk JB, Ivanov BV (2000) Attenuation of solar radiation in arctic snow: field observations and modelling. Ann Glaciol 31:364–368

    Article  Google Scholar 

  • Grenfell T, Perovich DK (2004) Seasonal and spatial evolution of albedo in a snow-ice-land-ocean environment. J Geophys Res 109(C1)

    Article  Google Scholar 

  • Hansen J, Nazarenko L (2003) Soot climate forcing via snow and ice albedos. P Natl Acad Sci USA 101(2):423–428

    Article  Google Scholar 

  • Hansen J, Russell G, Rind D, Stone P, Lacis A, Lebedeff S, Ruedy R, Travis L (1983) Efficient three-dimensional global models for climate studies: model I and II. Mon Weather Rev 111(4):609–662

    Article  Google Scholar 

  • Hanssen-Bauer I, Førland EJ, Nordli PØ (1996) Report No. 31/96: measured and true precipitation at Svalbard. Technical report, Norwegian Meteorological Institute

  • Hisdal V, Finnekåsa Ø (1996) Radiation measurements in Ny-Ålesund, Spitsbergen 1988–1992. Technical report, Norwegian Polar Institute

  • Hisdal V, Finnekåsa Ø, Vinje T (1992) Radiation measurements in Ny-Ålesund, Spitsbergen 1981–1987. Technical report, Norwegian Polar Institute

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) (2001) Climate change 2001: the scientific basis. Cambridge University Press

    Google Scholar 

  • Internet Page (2003) http://www.ecmwf.int/research/ifsdocs/physics/. European Centre for Medium-Range Weather Forcasts

  • Iqbal M (1983) An introduction to solar radiation. Academic Press, New York

    Google Scholar 

  • Ivanov BV (1999) New data on sea-ice Albedo in the Laptev and Barents Seas. In: Kassens H, Bauch HA, Dmitrenko I, Eicken H, Hubberten H-W, Melles M, Thiede J, Timokhov L (eds) Land-ocean systems in the Siberian Arctic: dynamics and history. Springer, Berlin Heidelberg New York, pp 59–63

    Google Scholar 

  • Jin J, Gao X, Yang Z-L, Bales RC, Sorooshian S, Dickinson RE, Sun SF, Wu GX (1999) Comparative analysis of physically based snowmelt models for climate simulations. J Climate 12:2643–2657

    Article  Google Scholar 

  • Killingtveit Å, Sæther B (2001) Hydrologiske modeller for Tilsigsprognosering - Med Hovedvekt p HBV-modellen (in Norwegian)

  • Klein AG, Stroeve J (2002) Development and validation of a snow albedo algorithm for the MODIS instrument. Ann Glaciol 34:45–52

    Article  Google Scholar 

  • Kleinbaum DG, Kupper LL, Muller KE (1988) Applied regression analysis and other multivariable methods. Duxbury Press

    Google Scholar 

  • Lejeune Y, Martin E (1995) Application du Modele CROCUS aux Donnees de la Saison 93/94 du Col de Porte et de la Campagne Leadex 92 (in French). Technical Report No 6, Meteo France

  • Loth B, Graf H-F, Oberhuber JM (1993) Snow cover model for global climate simulations. J Geophys Res 98(D6):10451–10464

    Article  Google Scholar 

  • Marshall SE (1989) A physical parameterization of snow albedo for use in climate models. PhD thesis, University of Washington, National Center for Atmospheric Research and University of Colorado

  • Marshall S, Oglesby RJ (1994) An improved snow hydrology for GCMs. Part 1: snow cover fraction, albedo, grain size and age. Climate Dyn 10:21–37

    Article  Google Scholar 

  • Montgomery DC, Peck EA, Vining GG (2001) Introduction to linear regression analysis. Wiley

    Google Scholar 

  • Oerlemans J, Knap WH (1998) A 1 year record of global radiation and albedo in the ablation zone of Morteratschgletscher, Switzerland. J Glaciol 44(147):231–238

    Google Scholar 

  • Perovich DK, Roesler CS, Pegau WS (1998) Variability in Arctic Sea ice optical properties. J Geophys Res 103(C1):1193–1208

    Article  Google Scholar 

  • Perovich DK, Grenfell TC, Light B, Hobbs PV (2002) Seasonal evolution of the albedo of multiyear Arctic Sea ice. J Geophys Res 107(C10)

    Google Scholar 

  • Pomeroy JW, Gray DM (1995) Snowcover. Accumulation, relocation and management. NHRI Science Report No. 7

  • Robock A, Vinnikov KY, Srinivasan G, Entin JK, Hollinger SE, Speranskaya NA, Liu S, Namkhai A (2000) The global soil moisture data bank. Bull Am Meterol Soc 81(6):1281–1299

    Article  Google Scholar 

  • Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5 - part 1. Technical Report 349, Max Planck Institute for Meteorology

  • Roesch AC (2000) Assessment of the land surface scheme in climate models with focus on surface albedo and snow cover. PhD thesis, Swiss Federal Institute of Technology Zurich

  • Roesch A, Wild M, Gilgen H, Ohmura A (2001) A new snow cover fraction parameterisation for the ECHAM4 GCM. Climate Dyn 17:933–946

    Article  Google Scholar 

  • Sergent C, Pougatch E, Sudul M, Bourdelles B (1993) Experimental investigation of optical snow properties. Ann Glaciol 17

    Google Scholar 

  • Slater AG, Pitman AJ, Desborough CE (1998) The validation of a snow parameterization designed for use in general circulation models. Int J Climatol 18:595–617

    Article  Google Scholar 

  • Swedishe Meterological and Hydrological Institute (2001) HBV/IHMS-Information

  • Verseghy DL (1991) CLASS - A Canadian land surface scheme for GCMs. I. Soil model. Int J climatol 11:111–133

    Article  Google Scholar 

  • Vinnikov KY, Yeserkepova IB (1991) Soil moisture: empirical data and model results. J Climate 4:66–79

    Article  Google Scholar 

  • Walpole RE, Myers RH, Myers SL, Ye K (2002) Probability and statistics for engineers and scientists. Prentice Hall

    Google Scholar 

  • Warren SG (1982) Optical properties of snow. Rev Geophys Space Phys 20(1):67–89

    Google Scholar 

  • Warren SG, Wiscombe WJ (1980) A model for the spectral albedo of snow. II: snow containing atmospheric aerosols. J Atmos Sci 37:2724–2745

    Google Scholar 

  • Winther J-G (1993) Short- and long-term variability of snow albedo. Nordic Hydrol 24:199–212

    Google Scholar 

  • Winther J-G, Gerland S, Ørbæk JB, Ivanov B, Blanco A, Boike J (1999) Spectral reflectance of melting snow in a high Arctic watershed on Svalbard: some implications for optical satellite remote sensing studies. Hydrol Process 13:2033–2049

    Article  Google Scholar 

  • Winther J-G, Godtliebsen F, Gerland S, Isachsen PE (2002) Surface albedo in Ny-Ålesund, Svalbard: variability and trends during 1981–1997. Global Planet Change 32:127–139

    Article  Google Scholar 

  • Winther J-G, Bruland O, Sand K, Gerland S, Marechal D, Ivanov B, Glowacki P, König M (2003) Snow research in Svalbard - an overview. Polar Res 22(2):125–144

    Article  Google Scholar 

  • Wiscombe WJ, Warren SG (1980) A model for the spectral albedo of snow. I: pure snow. J Atmos Sci 37:2712–2733

    Article  Google Scholar 

  • Yang D, Goodison BE, Metcalfe JR, Golubev VS, Elomaa E, Gunther T, Bates R, Pangburn T, Hanson CL, Emerson D, Copaciu V, Milkovic J (1995) Accuracy of Tretyakov precipitation gauge: result of WMO intercomparison. Hydrol Process 9:877–895

    Article  Google Scholar 

  • Yang Z-L, Dickinson RE, Robock A, Vinnikov KY (1997) Validation of the snow submodel of the biosphere-atmosphere transfer scheme with Russian snow cover and meteorological observational data. J Climate 10:353–373

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the Research Council of Norway, the Norwegian Polar Institute and the University of Tromsø. We thank J.-B. Ørbæk for providing data from Ny-Ålesund, P. Etchevers for providing data from Col de Porte, and A. Robock and N. Speranskaya for valuable information regarding the data from the former Soviet stations. Further, we acknowledge R. Essery, J. Hansen, E. Roeckner, D. Verseghy and Z.-L. Yang for answering questions regarding their respective GCM models and albedo parameterization, and G. Elvebakk for valuable discussions regarding the multiple linear regression model. We also would like to thank F. Godtliebsen, D. K. Hall, B. Ivanov, M. Køltzow, A. Ohmura, E. Roeckner and A. C. Roesch for valuable comments during the early stage of the work, and R. Hall and P. Lewis are acknowledged for their careful review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina A. Pedersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedersen, C.A., Winther, JG. Intercomparison and validation of snow albedo parameterization schemes in climate models. Climate Dynamics 25, 351–362 (2005). https://doi.org/10.1007/s00382-005-0037-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-005-0037-0

Keywords