Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Assessing solar radiation models using multiple variables over Turkey

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Solar radiation drives many environmental processes; however, needs to be estimated indirectly from more commonly measured meteorological variables since these data are not readily available from most climate stations. A geo-referenced dataset from 159 climate stations of 17 variables (maximum possible sunshine duration, mean, minimum and maximum air temperature, soil temperature, mean and maximum relative humidity, precipitation, cloudiness, evapotranspiration, extraterrestrial radiation, day length, declination angle, day of the year, latitude, longitude, and altitude) was used to model spatio-temporal dynamics of solar radiation over Turkey. A total of 78 empirical models of different mathematical functions with a different combination of 17 explanatory variables were compared based on the error statistics of the Jackknifing validation. The empirical models had adjusted coefficient of determination (R 2adj ) values of 22.7–96.5% based on the parameterization dataset (P < 0.05). Models 46 and 22.2 provided the most robust performance and were identified as generic models for the estimation of monthly changes in solar radiation over topographically complex terrain of the entire Turkey as a function of maximum possible sunshine hours, extraterrestrial solar radiation, mean temperature, and precipitation. The quadratic and cubic models performed best in terms of the error statistics (P > 0.05), while the performance of the hybrid models was worse than that of the linear, quadratic and cubic models in terms of maximum relative percentage error (e) (P < 0.01). In comparing the interpolation methods of inverse distance weighting and universal co-kriging, anisotropic spherical semi-variogram model of universal co-kriging was found to provide the best description of spatial autocorrelation and variability latent in these data based on the spatial leave-one-out cross-validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdalla YAG (1994) New correlation of global solar radiation with meteorological parameters for Bahrain. Int J Sol Energ 16:111–120

    Google Scholar 

  • Akpabio LE, Udo SO, Etuk SE (2004) Emprical correlations of global solar radiation with meteorological data for Onne, Nigeria. Turk J Phys 28:205–212

    Google Scholar 

  • Aksoy B (1997) Estimated monthly average global radiation for Turkey and its comparison with observations. Renew Energ 10:625–633

    Article  Google Scholar 

  • Allen R (1997) Self calibrating method for estimating solar radiation from air temperature. J Hydraul Eng 2:56–67

    Article  Google Scholar 

  • Almorox J, Hontoria C, Benito M (2005) Statistical validation of day length definitions for estimation of global solar radiation in Toledo, Spain. Energ Convers Manage 46:1465–1471

    Article  Google Scholar 

  • Alnaser WE (1993) New model to estimate the solar global irradiation using astronomical and meteorological parameters. Renew Energ 3:175–177

    Article  Google Scholar 

  • Annandale JG, Jovanic NZ, Benade N, Allen RG (2002) Software for missing data error analysis of Penman–Monteith reference evapotranspiration. Irrig Sci 21:57–67

    Article  Google Scholar 

  • Badescu V (1999) Correlations to estimate monthly mean daily solar global irradiation: application to Romania. Energy 24:883–893

    Article  Google Scholar 

  • Baigorria GA, Villegas EB, Trebejo I, Carlos JF, Quiroz R (2004) Atmospheric transmissivity: distribution and empirical estimation around the central Andes. Int J Climatol 24:1121–1136

    Article  Google Scholar 

  • Ball RA, Purcell LC, Carey SK (2004) Evaluation of solar radiation prediction models in North America. Agron J 96:391–397

    Article  Google Scholar 

  • Bashahu M, Nkundabakura P (1994) Analysis of daily global irradiation data for five sites in Rwanda and one in Senegal. Renew Energ 4:425–435

    Article  Google Scholar 

  • Bristow KL, Champbell GS (1984) On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agric For Meteorol 31:159–166

    Article  Google Scholar 

  • Castrignano A, Buttafuoco G (2004) Geostatistical stochastic simulation of soil water content in a forested area of south Italy. Biosyst Eng 87: 257–266

    Article  Google Scholar 

  • Chandel SS, Aggarwal RK, Pandev AN (2005) New correlation to estimate global solar radiation on horizontal surfaces using sunshine hour and temperature data for Indian sites. J Sol Energ T ASME 127:417–420

    Article  Google Scholar 

  • Chen R, Ersi K, Yang J, Lu S, Zhao W (2004) Validation of five global radiation models with measured daily data in China. Energ Convers Manage 45:1759–1769

    Article  Google Scholar 

  • Chen R, Kang E, Ji X, Yang J, Zhang Z (2006) Trends of the global radiation and sunshine hours in 1961–1998 and their relationships in China. Energ Conver Manage 47:2859–2866

    Article  Google Scholar 

  • Coops NC, Waring RH, Moncrieff JB (2000) Estimating mean monthly incident solar radiation on horizontal and inclined slopes from mean monthly temperature extremes. Int J Biometeorol 44:204–211

    Article  Google Scholar 

  • De Jong R, Stewart DW (1993) Estimating global solar radiation from common meteorological observations in western Canada. Can J Plant Sci 73:509–518

    Google Scholar 

  • Deutsch CV, Journel AG (1998) GSLIB: geostatistical software library and user’s guide. Oxford University Press, New York, 369 pp

    Google Scholar 

  • Donatelli M, Marletto V (1994) Estimating surface solar radiation by means of air temperature. In: Proceedings of the third ESA Congress, September 18–22. Abano, Italy, pp 352–353

  • Duffie JA, Beckman WA (2006) Solar engineering of thermal process, 3rd edn. Wiley, New York, 908 pp

    Google Scholar 

  • El-Metwally M (2004) Simple new methods to estimate global solar radiation based on meteorological data in Egypt. Atmos Res 69:217–239

    Article  Google Scholar 

  • Ertekin C, Evrendilek F (2007) Spatio-temporal modeling of global solar radiation dynamics as a function of sunshine duration for Turkey. Agric For Meteorol 145:36–47

    Article  Google Scholar 

  • Ertekin C, Yaldiz O (1999) Estimation of monthly average daily global radiation on a horizontal surface for Antalya (Turkey). Renew Energ 17:95–102

    Article  Google Scholar 

  • ESRI Inc. (2002) ArcGIS 8.2. ESRI Inc., Redlands, 253 pp

    Google Scholar 

  • Garcia JV (1994) Principios físicos de la climatología. Ediciones UNALM. Universidad Nacional Agraria La Molina, 244 pp

  • Garg HP, Garg ST (1982) Prediction of global solar radiation from bright sunshine hours and other meteorological parameters. In: Proceedings of solar India: national solar energy convention, New Delhi, pp 4–7

  • Gariepy J (1980) Estimation du rayonnement solaria global. Internal report. Service of Meteorology, Government of Quebec, Canada

  • Goodin DG, Hutchinson JMS, Vanderlip RL, Knapp MC (1999) Estimating solar irradiance for crop modeling using daily air temperature data. Agron J 91:845–851

    Article  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York, 483 pp

    Google Scholar 

  • Gopinathan KK (1988) A simple method for predicting global solar radiation on a horizontal surface. Sol Wind Technol 5:581–583

    Article  Google Scholar 

  • Grant RH, Hollinger SE, Hubbard KG, Hoogenboom G, Vanderlip RL (2004) Ability to predict daily solar radiation values from interpolated climate records for use in crop simulation models. Agric For Meteorol 127:65–75

    Article  Google Scholar 

  • Hargreaves GL, Hargreaves GH, Riley P (1985) Irrigation water requirement for the Senegal river basin. J Irrig Drain E ASCE 111:265–275

    Article  Google Scholar 

  • Hunt LA, Kuchar L, Swanton CJ (1998) Estimation of solar radiation for use in crop modelling. Agric For Meteorol 91:293–300

    Article  Google Scholar 

  • Jin Z, Yezheng W, Gang Y (2005) General Formula for estimation of monthly average daily global solar radiation in China. Energ Convers Manage 46:257–268

    Article  Google Scholar 

  • Johnston K, Hoef JMV, Krivoruchko K, Lucas N (2001) Using ArcGIS geostatistical analysis. GIS User Manual by ESRI, New York, 120–187 pp

  • Kara O, Eltez A, Ozdamar A, Ozbalta N (2001) An investigation on the relationship between solar radiation and temperature. In: Proceedings of Turkey–Germany energy symposium VI, June 21–23, Izmir, CD-ROM

  • Klabzuba J, Bures R, Koznarova V (1999) Model calculation of daily sum of global radiation used in growth models. In: Proceedings of the bioclimatology labour hours, Zvolen, pp 121–122

  • Lewis G (1983) Estimates of iradiance over Zimbabwe. Sol Energy 31:609–612

    Article  Google Scholar 

  • Liu DL, Scott BJ (2001) Estimation of solar radiation in Australia from rainfall and temperature observations. Agric For Meteorol 106:41–59

    Article  Google Scholar 

  • Mahmood R, Hubbard KG (2002) Effect of time of temperature observation and estimation of daily solar radiation for the Northern Great Plains, USA. Agron J 94:723–733

    Article  Google Scholar 

  • Menges HO, Ertekin C, Sonmete H (2006) Evaluation of global solar radiation models for Konya, Turkey. Energ Convers Manage 47:3149–3173

    Article  Google Scholar 

  • Meza F, Varas E (2000) Estimation of mean monthly solar global radiation as a function of temperature. Agric For Meteorol 100:231–241

    Article  Google Scholar 

  • Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–23

    Google Scholar 

  • Mubiru J, Banda EJKB, Ujanga FD, Senyonga T (2007) Assessing the performance of global solar radiation empirical formulations in Kumpala, Uganda. Theor Appl Climatol 87:179–184

    Article  Google Scholar 

  • Ododo JC, Sulaiman AT, Aidan J, Yuguda MM, Ogbu FA (1995) The importance of maximum air temperature in the parameterization of solar radiation in Nigeria. Renew Energ 6:751–763

    Article  Google Scholar 

  • Ojosu JO, Komolafe LK (1987) Models for estimating solar radiation availability in south western Nigeria. Niger J Sol Energ 6:69–77

    Google Scholar 

  • Richardson CW (1985) Weather simulation for crop management models. T ASAE 28:1602–1606

    Google Scholar 

  • Scheifinger H, Kromp-Kolb H (2000) Modeling global radiation in complex terrain: comparing two statistical approaches. Agric For Meteorol 100:127–136

    Article  Google Scholar 

  • Supit I, Kappel RRV (1998) A simple method to estimate global radiation. Sol Energ 63:147–160

    Article  Google Scholar 

  • Thornton PE, Running SW (1999) An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity and precipitation. Agric For Meteorol 93:211–228

    Article  Google Scholar 

  • Togrul IT, Onat E (1999) A study for estimating solar radiation in Elazig using geographical and meteorological data. Energ Convers Manage 40:1577–1584

    Article  Google Scholar 

  • Togrul IT, Onat E (2000) A comparison of estimated and measured values of solar radiation in Elazig, Turkey. Renew Energ 20:243–252

    Article  Google Scholar 

  • Togrul IT, Togrul H (2002) Global solar radiation over Turkey: comparison of predicted and measured data. Renew Energ 25:55–67

    Article  Google Scholar 

  • Trnka M, Zalud Z, Eitzinger J, Dubrovsky M (2005) Global solar radiation in Central European lowlands estimated by various empirical formulae. Agric For Meteorol 131:54–76

    Article  Google Scholar 

  • Ulgen K, Hepbasli A (2002) Comparison of solar radiation correlations for Izmir, Turkey. Int J Energ Res 26:413–430

    Article  Google Scholar 

  • Webster R, Oliver MA (2001) Geostatistics for environmental scientists. Wiley, New York, pp 225–271

    Google Scholar 

  • Weiss A, Hays CJ, Hu Q, Easterling WE (2001) Incorpolating bias error in calculating solar irradiance: implications for crop yield simulations. Agron J 93:1321–1326

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the research project grant (TOVAG-KARIYER-104O550) of the Scientific and Technological Research Council of Turkey (TUBITAK) and financial supports from the Research Project Administration Units of Abant Izzet Baysal University and Akdeniz University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Evrendilek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evrendilek, F., Ertekin, C. Assessing solar radiation models using multiple variables over Turkey. Clim Dyn 31, 131–149 (2008). https://doi.org/10.1007/s00382-007-0338-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-007-0338-6

Keywords