Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

TIMED/SABER observations of global gravity wave climatology and their interannual variability from stratosphere to mesosphere lower thermosphere

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The present study for the first time reports the global gravity wave activity in terms of their potential energy derived from TIMED/SABER observations right from the stratosphere to the mesosphere lower thermosphere (MLT) region. The potential energy profiles obtained from SABER temperature are validated by comparing them with ground based LIDAR observations over a low latitude site, Gadanki (13.5° N, 79.2° E). The stratospheric and mesospheric global maps of gravity wave energy showed pronounced maxima over high and polar latitudes of the winter hemisphere. The interannual variability of the stratospheric gravity wave activity exhibited prominent annual oscillation over mid-latitudes. The equatorial gravity wave activity exhibited quasi-biennial oscillation in the lower stratosphere and semi-annual oscillation in the upper stratosphere. The MLT region maps revealed summer hemispheric maxima over polar latitudes and secondary maxima over the equatorial region. The results are discussed in the light of present understanding of global gravity wave observations. The significance of the present study lies in emphasizing the importance of satellite measurements in elucidating gravity waves, which is envisaged to have profound impact on parameterizing these waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alexander MJ (1998) Interpretations of observed climatological patterns in stratospheric gravity wave variance. J Geophys Res 103(D8):8627–8640

    Google Scholar 

  • Alexander MJ, Barnet C (2007) Using satellite observations to constrain parameterizations of gravity wave effects for global models. J Atmos Sci 64(5):1652–1665

    Article  Google Scholar 

  • Alexander MJ et al (2008) Global estimates of gravity wave momentum flux from High Resolution Dynamics Limb Sounder observations. J Geophys Res 113:D15S18. doi:10.1029/2007JD008807

    Article  Google Scholar 

  • Antonita TM, Ramkumar G, Kumar KK, Appu KS, Nambhoodiri KVS (2007) A quantitative study on the role of gravity waves in driving the tropical Stratospheric Semiannual Oscillation. J Geophys Res 112:D12115. doi:10.1029/2006JD008250

    Article  Google Scholar 

  • Antonita TM, Ramkumar G, Kumar KK, Deepa V (2008a) Meteor wind radar observations of gravity wave momentum fluxes and their forcing toward the Mesospheric Semiannual Oscillation. J Geophys Res 113:D10115. doi:10.1029/2007JD009089

    Article  Google Scholar 

  • Antonita TM, Ramkumar G, Kumar KK, Sunil Kumar SV (2008b) Quantification of gravity wave forcing in driving the stratospheric Quasi-Biennial Oscillation. Geophys Res Lett 35:L09805. doi:10.1029/2008GL033960

    Article  Google Scholar 

  • Beatty TJ, Hostetler CA, Gardner CS (1992) Lidar observations of gravity waves and their spectra near the mesopause and stratopause at Arecibo. J Atmos Sci 49:477–496

    Article  Google Scholar 

  • Deepa V, Ramkumar G, Krishna Murthy BV (2006) Gravity waves observed from the Equatorial Wave Studies (EWS) campaign during 1999 and 2000 and their role in the generation of stratospheric semiannual oscillations. Ann Geophys 24:2481–2491

    Article  Google Scholar 

  • Eckermann SD, Hirota I, Hocking WK (1994) Gravity wave and equatorial wave morphology of the stratosphere derived from long-term rocket soundings. Q J R Meteorol Soc 121:149–186

    Article  Google Scholar 

  • Ern M, Preusse P, Alexander MJ, Warner CD (2004) Absolute values of gravity wave momentum flux derived from satellite data. J Geophys Res 109:D20103. doi:10.1029/2004JD004752

    Article  Google Scholar 

  • Fetzer EJ, Gille JC (1994) Gravity wave variances in LIMS temperatures, part I, variability and comparison with background winds. J Atmos Sci 51:2461–2483

    Article  Google Scholar 

  • Fritts DC, Alexander MJ (2003) Gravity wave dynamics and effects in the middle atmosphere. Rev Geophys 41(1):1003. doi:10.1029/2001RG000106

    Google Scholar 

  • Frohlich K et al (2007) The global distribution of gravity wave energy in the lower stratosphere derived from GPS data and gravity wave modelling: attempt and challenges. J Atmos Solar Terr Phys 69:2238–2248. doi:10.1016/j.jastp.2007.07.005

    Article  Google Scholar 

  • Kishore Kumar G, Venkat Ratnam M, Patra AK, Rao SVB, Russell J (2008) Mean thermal structure of the low-latitude middle atmosphere studied using Gadanki Rayleigh lidar, Rocket, and SABER/TIMED observations. J Geophys Res 113:D23106. doi:10.1029/2008JD010511

    Article  Google Scholar 

  • Kumar KK (2006) VHF radar observations of convectively generated gravity waves: Some new insights. Geophys Res Lett 33:L01815. doi:10.1029/2005GL024109

    Article  Google Scholar 

  • Kumar KK (2007a) VHF radar investigations on the role of mechanical oscillator effect in exciting convectively generated gravity waves. Geophys Res Lett 34:L01803. doi:10.1029/2006GL027404

    Article  Google Scholar 

  • Kumar KK (2007b) Temperature profiles in the MLT region using radar-meteor trail decay times: Comparison with TIMED/SABER observations. Geophys Res Lett 34:L16811. doi:10.1029/2007GL030704

    Article  Google Scholar 

  • Kumar KK, Antonita TM, Shelbi ST (2007) Initial results from SKiYMET meteor radar at Thumba (8.5°N, 77°E): 2. Gravity wave observations in the MLT region. Radio Sci 42:RS6009. doi:10.1029/2006RS003553

  • Li Z, Robinson W, Liu AZ (2009) Sources of gravity waves in the lower stratosphere above South Pole. J Geophys Res 114:D14103. doi:10.1029/2008JD011478

    Article  Google Scholar 

  • Lieberman RS, Riggin DM, Garcia RR, Wu Q, Remsberg EE (2006), Observations of intermediate-scale diurnal waves in the equatorial mesosphere and lower thermosphere. J Geophys Res 111:A10S11. doi:10.1029/2005JA011498

  • Lindzen RS (1973) Wave-mean flow interactions in the upper atmosphere. Bound Layer Meteor 4:327–343

    Google Scholar 

  • Lubken FJ, Fricke KH, Langer M (1996) Noctilucent clouds and the thermal structure near the Arctic mesopause in summer. J Geophys Res 101:9489–9508

    Article  Google Scholar 

  • Mertens CJ, Mlynczak MG, López-Puertas M, Wintersteiner PP, Picard RH, Winick JR, Gordley LL, Russell JM III (2001) Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15 mm Earth limb emission under non-LTE conditions. Geophys Res Lett 28(7):1391–1394

    Article  Google Scholar 

  • Mertens CJ et al (2004) SABER observations of mesospheric temperatures and comparisons with falling sphere measurements taken during the 2002 summer MaCWAVE campaign. Geophys Res Lett 31:L03105. doi:10.1029/2003GL018605

    Article  Google Scholar 

  • Namboothiri SP, Jiang JH, Kishore P, Igarashi K, Ao CO, Romans LJ (2008) CHAMP observations of global gravity wave fields in the troposphere and stratosphere. J Geophys Res 113:D07102. doi:10.1029/2007JD008912

    Article  Google Scholar 

  • Nastrom GD, Fritts DC (1992) Sources of mesoscale variability of gravity waves, part I. Topographic excitation. J Atmos Sci 49:101–110

    Article  Google Scholar 

  • Parameswaran K, Sasi MN, Ramkumar G, Nair PR, Deepa V et al (2000) Altitude profiles of temperature from 4 to 80 km over the tropics from MST radar and lidar. J Atmos Sol Terr Phys 62:1327–1337

    Article  Google Scholar 

  • Preusse P, Eckermann SD, Offermann D (2000) Comparison of global distributions of zonal-mean gravity wave variance inferred from different satellite instruments. Geophys Res Lett 27(23):3877–3880, 2000GL011916

    Google Scholar 

  • Preusse P, Do¨rnbrack A, Eckermann SD, Riese M, Schaeler B, Bacmeister J, Broutman D, Grossmann KU (2002) Space based measurements of stratospheric mountain waves by CRISTA: 1. Sensitivity, analysis method and a case study. J Geophys Res 107(D23):8178. doi:10.1029/2001JD000699

    Google Scholar 

  • Preusse P, Eckermann SD, Ern M, Oberheide J, Picard RH, Roble RG, Riese M, Russell JM III, Mlynczak MG (2009) Global ray tracing simulations of the SABER gravity wave climatology. J Geophys Res 114:D08126. doi:10.1029/2008JD011214

    Article  Google Scholar 

  • Ramkumar G, Antonita TM, Bhavani Kumar Y, Venkata Kumar H, Narayana Rao D (2006) Seasonal variation of gravity waves in the Equatorial Middle Atmosphere: results from ISRO’s Middle Atmospheric Dynamics (MIDAS) program. Ann Geophys 24:2471–2480

    Article  Google Scholar 

  • Ratnam VM, Tetzlaff G, Jacobi C (2004) Global and seasonal variations of stratospheric gravity wave activity deduced from the CHAMP/GPS satellite. J Atmos Sci 61:1610–1620

    Article  Google Scholar 

  • Remsberg E, Lingenfelser G, Harvey VL, Grose W, Russell III J, Mlynczak M, Gordley L, Marshall BT (2003), On the verification of the quality of SABER temperature, geopotential height, and wind fields by comparison with Met Office assimilated analyses. J Geophys Res 108(D20):4628. doi:10.1029/2003JD003720

    Google Scholar 

  • Remsberg EE et al (2008) Assessment of the quality of the version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER. J Geophys Res 113:D17101. doi:10.1029/2008JD010013

    Article  Google Scholar 

  • Riggin DM, Fritts DC, Fawcett CD, Kudeki E, Hitchman MH (1997) Radar observations of gravity waves over Jicamarca, Peru, during the CADRE campaign. J Geophys Res 102:26263–26281

    Google Scholar 

  • Sato K (2000) Sources of gravity waves in the middle atmosphere. Adv Polar Upper Atmos Res 14:233–240

    Google Scholar 

  • Schroeder S, Preusse P, Ern M, Riesse M (2009) Gravity waves resolved in ECMFW and measured by SABER. Geophys Res Lett 36:L10805. doi:10.1029/2008GL037054

    Article  Google Scholar 

  • Torre A, Schmidt T, Wickert J (2006) A global analysis of wave potential energy in the lower stratosphere derived from 5 years of GPS radio occultation data with CHAMP. Geophys Res Lett 33:L24809. doi:10.1029/2006GL027696

    Article  Google Scholar 

  • Tsuda T, Inoue T, Kato S, Fukao S, Fritts DC, VanZandt TE (1989) MST radar observations of a saturated gravity wave spectrum. J Atmos Sci 46:2440–2447

    Article  Google Scholar 

  • Tsuda T, Nishida M, Rocken C, Ware RH (2000) A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET). J Geophys Res 105:7257–7273

    Article  Google Scholar 

  • Tsuda T, Ratnam MV, May PT, Alexander MJ, Vincent RA, MacKinnon A (2004) Characteristics of gravity waves with short vertical wavelengths observed with radiosonde and GPS occultation during DAWEX (Darwin Area Wave Experiment). J Geophys Res 109:D20S03. doi:10.1029/2004JD004946

  • Wang L, Geller MA (2003) Morphology of gravity-wave energy as observed from 4 years (1998–2001) of high vertical resolution U.S. radiosonde data. J Geophys Res 108(D16):4489. doi:10.1029/2002JD002786

    Google Scholar 

  • Wilson R, Chanin ML, Hauchecorne A (1991a) Gravity waves in the middle atmosphere observed by Rayleigh lidar 1. Case studies. J Geophys Res 96:5169–5183

    Article  Google Scholar 

  • Wilson R, Chanin ML, Hauchecorne A (1991b) Gravity waves in the middle atmosphere observed by Rayleigh lidar 2. Climatology. J Geophys Res 96:5153–5165

    Article  Google Scholar 

  • Wu DL, Waters JW (1996) Satellite observations of atmospheric variances: a possible indication of gravity waves. Geophys Res Lett 23(3631–3634):1996

    Google Scholar 

  • Wu DL, Waters JW (1997) Observations of gravity waves with the UARS Microwave Limb Sounder, Gravity wave Processes, NATOASI Series 1: Global Environment. Change 50:103–120

    Google Scholar 

Download references

Acknowledgments

Sherine Rachel John is grateful to ISRO for providing Research Fellowship for her work. The authors are thankful to the TIMED/SABER team for the freely downloadable data, to ECMWF for the ERA-40 wind data, and to NARL, Gadanki, for the Lidar data during the MIDAS period used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karanam Kishore Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

John, S.R., Kumar, K.K. TIMED/SABER observations of global gravity wave climatology and their interannual variability from stratosphere to mesosphere lower thermosphere. Clim Dyn 39, 1489–1505 (2012). https://doi.org/10.1007/s00382-012-1329-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1329-9

Keywords