Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Comparison of multiple datasets with gridded precipitation observations over the Tibetan Plateau

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Precipitation is a critical component of the water balance, and hence its variability is critical for cryospheric and climate change in the Tibetan Plateau (TP). Mean annual and seasonal precipitation totals are compared between gridded observations interpolated to a high resolution (0.5° × 0.5°) and multiple reanalysis type-datasets during 1979–2001. The latter include two NCEP reanalyses (NCEP1 and NCEP2), two European Centre for Medium-Range Weather Forecasts (ECMWF) reanalyses (ERA-40 and ERA-Interim), three modern reanalyses [the twentieth century reanalysis (20century), MERRA and CFSR] and three merged analysis datasets (CMAP1, CMAP2 and GPCP). Observations show an increase in mean precipitation from the northwestern to the southeastern (SE) regions of the TP which are divided by an isohyet of 400 mm, and overall trends during the studied period are positive. Compared with observations, most of the datasets (NCEP1, NCEP2, CMAP1, CMAP2, ERA-Interim, ERA-40, GPCP, 20century, MERRA and CFSR) can both broadly capture the spatial distributions and identify temporal patterns and variabilities of mean precipitation. However, most multi-datasets overestimate precipitation especially in the SE where summer convection is dominant. There remain substantial disagreements and large discrepancies in precipitation trends due to differences in assimilation systems between datasets. Taylor diagrams are used to show the correlation coefficients, standard deviation, and root-mean-square difference of precipitation totals between interpolated observations and assimilated values on an annual and seasonal basis. Merged analysis data (CMAP1 and CMAP2) agree with observations more closely than reanalyses. Thus not all datasets are equally biased and choice of dataset is important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adler RF et al (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol 4(6):1147–1167

    Article  Google Scholar 

  • Allan RP, Soden BJ (2008) Atmospheric warming and the amplification of precipitation extremes. Science 321(5895):1481–1484

    Article  Google Scholar 

  • Betts AK, Zhao M, Dirmeyer PA, Beljaars ACM (2006) Comparison of ERA40 and NCEP/DOE near-surface data sets with other ISLSCP-II data sets. J Geophys Res Atmos 111:D22S04

  • Betts AK, Kohler M, Zhang YC (2009) Comparison of river basin hydrometeorology in ERA-Interim and ERA-40 reanalyses with observations. J Geophys Res Atmos 114:D02101

    Article  Google Scholar 

  • Bosilovich MG, Chen J, Robertson FR, Adler RF (2008) Evaluation of global precipitation in reanalyses. J Appl Meteorol Climatol 47(9):2279–2299

    Article  Google Scholar 

  • Compo GP et al (2011) The Twentieth Century Reanalysis Project. Q J R Meteorol Soc 137(654):1–28

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

    Article  Google Scholar 

  • Duan AM, Wu GX (2005) Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Clim Dyn 24(7–8):793–807

    Article  Google Scholar 

  • Duan AM, Wu G, Liu Y, Ma Y, Zhao P (2012) Weather and climate effects of the Tibetan Plateau. Adv Atmos Sci 29(5):978–992

    Article  Google Scholar 

  • Feng L, Zhou TJ (2012) Water vapour transport for summer precipitation over the Tibetan Plateau: multidata set analysis. J Geophys Res Atmos 117:D20114

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Arkin P, Chang A, Ferraro R, Gruber A, Janowiak J, McNab A, Rudolf B, Schneider U (1997) The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull Am Meteorol Soc 78(1):5–20

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP Version 2.1. Geophys Res Lett 36:L17808

    Article  Google Scholar 

  • Immerzeel WW, van Beek LPH, Bierkens MFP (2010) Climate change will affect the Asian water towers. Science 328(5984):1382–1385

    Article  Google Scholar 

  • IPCC (2007) Summary for policymakers of climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • IPCC (2013) Summary for policymakers of climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Joshi MK, Pandey AC (2011) Trend and spectral analysis of rainfall over India. J Geophys Res Atmos 116:D06104

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83(11):1631–1643

    Article  Google Scholar 

  • Kang SC, Xu YW, You QL, Flugel WA, Pepin N, Yao TD (2010) Review of climate and cryospheric change in the Tibetan Plateau. Environ Res Lett 5(1):015101

    Article  Google Scholar 

  • Kistler R et al (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82(2):247–267

    Article  Google Scholar 

  • Liu XD, Yin ZY (2001) Spatial and temporal variation of summer precipitation over the eastern Tibetan Plateau and the North Atlantic oscillation. J Clim 14(13):2896–2909

    Article  Google Scholar 

  • Ma LJ, Zhang T, Frauenfeld OW, Ye BS, Yang DQ, Qin DH (2009) Evaluation of precipitation from the ERA-40, NCEP-1, and NCEP-2 Reanalyses and CMAP-1, CMAP-2, and GPCP-2 with ground-based measurements in China. J Geophys Res Atmos 114:D09105

    Google Scholar 

  • New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21:1–25

    Article  Google Scholar 

  • Ohmura A, Wild M (2002) Is the hydrological cycle accelerating? Science 298(5597):1345–1346

    Article  Google Scholar 

  • Qiu J (2008) The third pole. Nature 454(7203):393–396

    Article  Google Scholar 

  • Rienecker MM et al (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24(14):3624–3648

    Article  Google Scholar 

  • Saha S et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91(8):1015–1057

    Article  Google Scholar 

  • Sen PK (1968) Estimates of regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389

    Article  Google Scholar 

  • Serreze MC, Hurst CM (2000) Representation of mean Arctic precipitation from NCEP-NCAR and ERA reanalyses. J Clim 13(1):182–201

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106(D7):7183–7192

    Article  Google Scholar 

  • Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47(1–2):123–138

    Article  Google Scholar 

  • Trenberth KE, Guillemot CJ (1998) Evaluation of the atmospheric moisture and hydrological cycle in the NCEP/NCAR reanalyses. Clim Dyn 14(3):213–231

    Article  Google Scholar 

  • Uppala SM et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012

    Article  Google Scholar 

  • Wu J, Gao XJ (2013) A gridded daily observation dataset over China region and comparison with the other datasets. Chin J Geophys 56(4):1102–1111

    Google Scholar 

  • Xie PP, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78(11):2539–2558

    Article  Google Scholar 

  • Xu XD, Lu CG, Shi XH, Gao ST (2008a) World water tower: an atmospheric perspective. Geophys Res Lett 35(20):L20815

    Article  Google Scholar 

  • Xu ZX, Gong TL, Li JY (2008b) Decadal trend of climate in the Tibetan Plateau—regional temperature and precipitation. Hydrol Process 22(16):3056–3065

    Article  Google Scholar 

  • Xu Y, Gao XJ, Yan SY, Xu CH, Shi Y, Giorgi F (2009) A daily temperature dataset over China and its application in validating a RCM simulation. Adv Atmos Sci 26(4):763–772

    Article  Google Scholar 

  • Yang K, Ye BS, Zhou DG, Wu BY, Foken T, Qin J, Zhou ZY (2011) Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Clim Change 109(3–4):517–534

    Article  Google Scholar 

  • Yeh TC, Gao YX (1979) Meteorology of the Qinghai–Xizang (Tibet) Plateau (in Chinese). Science Press, Beijing

    Google Scholar 

  • Yin XG, Gruber A, Arkin P (2004) Comparison of the GPCP and CMAP merged gauge–satellite monthly precipitation products for the period 1979-2001. J Hydrometeorol 5(6):1207–1222

    Article  Google Scholar 

  • You QL, Fraedrich K, Ren GY, Ye BS, Meng XH, Kang SC (2012) Inconsistencies of precipitation in the eastern and central Tibetan Plateau between surface adjusted data and reanalysis. Theor Appl Climatol 109:485–496

    Article  Google Scholar 

  • Zhang Q, Kornich H, Holmgren K (2013) How well do reanalyses represent the southern African precipitation? Clim Dyn 40:951–962

    Article  Google Scholar 

  • Zhao T, Fu C (2006) Comparison of products from ERA-40, NCEP-2, and CRU with station data for summer precipitation over China. Adv Atmos Sci 23(4):593–604

    Article  Google Scholar 

Download references

Acknowledgments

This study is supported by the State Key Program of National Natural Science Foundation of China (41230528), National Natural Science Foundation (41201072); Jiangsu Specially-Appointed Professor (R2013T07), Jiangsu Natural Science Funds for Distinguished Young Scholar “BK20140047”, Open Research Fund Program of Plateau Atmosphere and Environment Key Laboratory of Sichuan Province (PAEKL-2014-K1) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). This is the ESMC contribution Number 011. We are very grateful to the reviewers for their constructive comments and thoughtful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinglong You.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, Q., Min, J., Zhang, W. et al. Comparison of multiple datasets with gridded precipitation observations over the Tibetan Plateau. Clim Dyn 45, 791–806 (2015). https://doi.org/10.1007/s00382-014-2310-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2310-6

Keywords