Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Impact of land-use and land-cover changes on CRCM5 climate projections over North America for the twenty-first century

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The aim of this study is to assess the impact of land-use and land-cover change (LULCC) on regional climate projections for North America. To this end, two transient climate change simulations, with and without LULCC, but identical atmospheric forcing, are performed with the 5th generation of the Canadian Regional Climate Model (CRCM5) driven by CanESM2 model for the (2006–2100)-RCP4.5 scenario. For the simulation with LULCC, land-cover data sets are taken from the Global Change Assessment Model representing the RCP4.5 scenario for the period 2006–2100. LULCC in RCP4.5 scenario point to significant reduction in cultivated land (e.g. Canadian Prairies and Mississippi basin) due to intense afforestation. Results suggest that biogeophysical effects of LULCC on climate, assessed through differences between the all-forcing (atmospheric and LULCC) run and the atmospheric forcing run (with constant land cover) are substantial for relevant surface variables. It is shown that the afforestation of cropland lead to warmer regional climates, especially in winter (warming above 1.5 °C), as compared with climates resulting from atmospheric forcings alone. The investigation of processes leading to this response shows high sensitivity of the results to changes in albedo as a response to LULCC. Additional roughness, evaporative cooling and water soil availability also seem to play an important role in regional climate especially for the summer season in certain afforested areas (e.g., southeastern US).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akhtar F et al (2008) Beyond the standards: designer air quality in 2050. Bull Am Meteorol Soc 89(1):38

    Google Scholar 

  • Arakawa A, Lamb VR (1977) Computational design of the basic dynamical process of the UCLA general circulation model. Methods Comput Phys 17:173–265

    Google Scholar 

  • Arora VK, Boer GJ (2010) Uncertainties in the 20th century carbon budget associated with land use change. Glob Change Biol 16:3327–3348

    Article  Google Scholar 

  • Arora VK, Montenegro A (2011) Small temperature benefits provided by realistic afforestation efforts. Nat Geosci 4:514–518. doi:10.1038/ngeo1182

    Article  Google Scholar 

  • Arora VK, Scinocca JF, Boer GJ, Christian JR, Denman KL, Flato GM, Kharin VV, Lee WG, Merryfield WJ (2011) Carbon emission limits required to satisfy future representative pathways of greenhouse gases. Geophys Res Lett 38:L05805

    Article  Google Scholar 

  • Bala G et al (2007) Combined climate and carbon-cycle effects of large-scale deforestation. Proc Natl Acad Sci USA 104(16):6550–6555. doi:10.1073/pnas.0608998104

    Article  Google Scholar 

  • Bélair S, Mailhot J, Girard C, Vaillancourt P (2005) Boundary-layer and shallow cumulus clouds in a medium-range forecast of a large-scale weather system. Mon Weather Rev 133:1938–1960

    Article  Google Scholar 

  • Beltran-Przekurat A et al (2012) Modelling the effects of land-use/land-cover changes on the near-surface atmosphere in southern South America. Int J Climatol 32(8):1206–1225. doi:10.1002/joc.2346

    Article  Google Scholar 

  • Benoit R, Côté J, Mailhot J (1989) Inclusion of a TKE boundary layer parameterization in the Canadian regional finite-element model. Mon Weather Rev 117:1726–1750

    Article  Google Scholar 

  • Betts RA (1998) Investigating the influence of vegetation on climate. Ph.D. thesis, University of Reading, p 165

  • Betts RA (2000) Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408(6809):187–190. doi:10.1038/35041545

  • Betts RA, Falloon PD, Klein Goldewijk K, Ramankutty N (2007) Biogeophysical effects of land use on climate: model simulations of radiative forcing and large-scale temperature change. Agric Forest Meteorol 142(2–4):216–233. doi:10.1016/j.agrformet.2006.08.021

    Article  Google Scholar 

  • Bonan G (2008) Ecological climatology concepts and applications, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Brovkin V, Ganopolski A, Claussen M, Kubatzki C, Petoukhov V (1999) Modelling climate response to historical land cover change. Glob Ecol Biogeogr 8:509–517

    Article  Google Scholar 

  • Chen G-S, Notaro M, Liu Z, Liu Y (2012) Simulated local and remote biophysical effects of afforestation over Southeast United States in boreal summer. J Clim 25:4511–4522. doi:10.1175/JCLI-D-11-00317.1

    Article  Google Scholar 

  • Christian JR, Arora VK, Boer GJ, Curry CL, Zahariev K, Denman KL, Flato GM, Lee WG, Merryfield WJ, Roulet NT, Scinocca JF (2010) The global carbon cycle in the Canadian Earth System Model (CanESM1): preindustrial control simulation. J Geophys Res 115:G03014

    Article  Google Scholar 

  • Clarke L, Edmonds J, Jacoby H, Pitcher H, Reilly J, Richels R (2007) Scenarios of greenhouse gas emissions and atmospheric concentrations. Sub-report 2.1A of synthesis and assessment product 2.1 by the U.S. Climate change science program and the subcommittee on global change research. Department of Energy, Office of Biological & Environmental Research, Washington, D.C., p 154

    Google Scholar 

  • Côté J, Gravel S, Méthot A, Patoine A, Roch M, Staniforth A (1998) The operational CMC-MRB global environmental multiscale (GEM) model. Part I: design considerations and formulation. Mon Weather Rev 126:1373–1395

    Article  Google Scholar 

  • Davies HC (1976) A lateral boundary formulation for multi-level prediction models. Q J R Meteorol Soc 102:405–418

    Google Scholar 

  • Davin EL, de Noblet-Ducoudre N (2010) Climatic impact of global-scale 482 deforestation: radiative versus nonradiative processes. J Clim 23(1):97–112. doi:10.1175/2009jcli3102.1

    Article  Google Scholar 

  • Delage Y (1997) Parameterising sub-grid scale vertical transport in atmospheric models under statically stable conditions. Bound-Layer Meteorol 82:23–48

    Article  Google Scholar 

  • Delage Y, Girard C (1992) Stability functions correct at the free convection limit and consistent for both the surface and Ekman layers. Bound-Layer Meteorol 58:19–31

    Article  Google Scholar 

  • Feddema J et al (2005) The importance of land-cover change in simulating future climates. Science 310(5754):1674–1678

    Article  Google Scholar 

  • Gálos B et al (2011) Regional characteristics of climate change altering effects of afforestation. Environ Res Lett 6:044010. doi:10.1088/1748-9326/6/4/044010

    Article  Google Scholar 

  • Gent PR, Bryan FO, Danabasoglu G, Doney SC, Holland WR, Large WG, McWilliams JC (1998) The NCAR climate system model global ocean component. J Clim 11:1287–1306

    Article  Google Scholar 

  • Höller P (2001) The influence of the forest on night-time snow surface temperature. Ann Glaciol 32:217–222

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007 IPCC fourth assessment report: synthesis report. IPCC, Geneva, pp 184–498

    Google Scholar 

  • Jihee S et al (2008) The impacts of urbanization on emissions and air quality: comparison of four visions of Austin, Texas. Environ Sci Technol 42(19):7294–7300

  • Kain S, Fritsch JM (1990) A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci 47:2784–2802

    Article  Google Scholar 

  • Krinner G et al (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob Biogeochem Cycles. doi:10.1029/2003GB002199

    Google Scholar 

  • Kuo HL (1965) On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J Atmos Sci 22:40–63

    Article  Google Scholar 

  • Kyle GP, Luckow P, Calvin KV, Emanuel WR, Nathan M, Zhou Y (2011) GCAM 3.0 Agriculture and Land Use: Data Sources and Methods (Richland, WA: Pacific Northwest National Laboratory) PNNL-21025

  • Langlois A, Bergeron J, Brown R, Royer A, Harvey R, Roy A, Wang L, Thériault N (2014) Evaluation of CLASS 2.7 and 3.5 simulations of snow properties from the canadian regional climate model (CRCM4) over Québec, Canada. J Hydrometeorol 15:1325–1343. doi:10.1175/JHM-D-13-055.1

    Article  Google Scholar 

  • Laprise R (1992) The Euler equation of motion with hydrostatic pressure as independent coordinate. Mon Weather Rev 120:197–207

    Article  Google Scholar 

  • Lawrence PJ, Chase TN (2010) Investigating the climate impacts of global land cover change in the community climate system model. Int J Climatol 30(13):2066–2087. doi:10.1002/joc.2061

    Article  Google Scholar 

  • Lee XH et al (2011) Observed increase in local cooling effect of deforestation at higher latitudes. Nature 479:384–437

    Article  Google Scholar 

  • Li J, Barker HW (2005) A radiation algoritm with correlated-k distribution. Part I: local thermal equilibrium. J Atmos Sci 62:286–309

    Article  Google Scholar 

  • Li Y, Zhao M, Motesharrei S, Mu Q, Kalnay E, Li S (2015) Local cooling and warming effects of forests based on satellite observations. Nat Commun 6:6603

    Article  Google Scholar 

  • Liu YQ (2011) A numerical study on hydrological impacts of forest restoration in the Southern United States. Ecohydrology 4:299–314. doi:10.1002/eco.178

  • Liu P et al (2012) Differences between downscaling with spectral and grid nudging using WRF. Atmos Chem Phys 12(8):3601–3610. doi:10.5194/acp-12-5273601-2012

    Article  Google Scholar 

  • Mahmood R et al (2010) Impacts of land use/land cover change on climate and future research priorities. Bull Am Meteorol Soc 91(1):530. doi:10.1175/2009bams2769.1

    Article  Google Scholar 

  • Martynov A, Sushama L, Laprise R, Winger K, Dugas B (2012) Interactive lakes in the Canadian regional climate model, version 5: the role of lakes in the regional climate of North America. Tellus A 64:16226

    Article  Google Scholar 

  • McFarlane NA (1987) The effect of orographically excited gravity-wave drag on the circulation of the lower stratosphere and troposphere. J Atmos Sci 44:1175–1800

    Article  Google Scholar 

  • Meinshausen M, Smith S (2011) The RCP greenhouse gas concentrations and their extension from 1765 to 2500. Clim Change (Special Issue on RCPs)

  • Mironov D, Heise E, Kourzeneva E, Ritter B, Schneider N, Terzhevik A (2010) Implementation of the lake parameterisation scheme FLake into the numerical weather prediction model COSMO. Boreal Environ Res 15:218–230

    Google Scholar 

  • Scinocca JF, McFarlane NA, Lazare M, Li J, Plummer D (2008) Technical note: the CCCma third generation AGCM and its extension into the middle atmosphere. Atmos Chem Phys 8:7055–7074

    Article  Google Scholar 

  • Šeparović L, Alexandru A, Laprise R, Martynov A, Sushama L, Winger K, Tete K, Valin M (2013) Present climate and climate change over North America as simulated by the fifth-generation Canadian regional climate model. Clim Dyn. doi:10.1007/s00382-013-1737-5

    Google Scholar 

  • Sitch S et al (2004) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Change Biol 9(2):161–185

    Article  Google Scholar 

  • Smith SJ, Wigley TML (2006) Multi-gas forcing stabilization with the MiniCAM. Energy J (Special Issue #3):373–391

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, London

  • Sundqvist H, Berge E, Kristjansson JE (1989) Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon Weather Rev 117:1641–1657

    Article  Google Scholar 

  • Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, Edmonds JA (2011) RCP4. 5: A pathway for stabilization of radiative forcing by 2100. Clim Change 109:77–94. doi:10.1007/s10584-011-0151-4

    Article  Google Scholar 

  • Trail M et al (2013) Potential impact of land use change on future regional climate in the Southeastern U.S.: reforestation and crop land conversion. J Geophys Res Atmos. doi:10.1002/2013JD020356

    Google Scholar 

  • Verseghy D (2009) CLASS—The Canadian Land Surface Scheme (Version 3.4): Technical Documentation (Version 1.1)

  • Vitousek PM et al (2009) Nutrient imbalances in agricultural development. Science 324:1519–1520. doi:10.1126/science.1170261

    Article  Google Scholar 

  • von Salzen K, McFarlane NA, Lazare M (2005) The role of shallow convection in the water and energy cycles of the atmosphere. Clim Dyn 25:671–688

    Article  Google Scholar 

  • Wang YH, Yu PT, Feger KH, Wei XH, Sun G, Bonell M, Xiong W, Zhang SL, Xu LH (2011) Annual runoff and evapotranspiration of forestlands and non-forestlands in selected basins of the Loess Plateau of China. Ecohydrology 4:277–287. doi:10.1002/eco.215

  • Wang Y, Yan X, Wang Z (2014) The biogeophysical effects of extreme afforestation in modeling future climate. Theor Appl Climatol 118:511–521.doi:10.1007/s00704-013-1085-8

    Article  Google Scholar 

  • Wise MA, Calvin KV, Thomson AM, Clarke LE, Bond-Lamberty B, Sands RD, Smith SJ, Janetos AC, Edmonds JA (2009) Implications of limiting CO2 concentrations for land use and energy. Science 324:1183–1186

    Article  Google Scholar 

  • Yeh K-S, Côté J, Gravel S, Méthot A, Patoine A, Roch M, Staniforth A (2002) The CMC-MRB global environmental multiscale (GEM) model. Part III: nonhydrostatic formulation. Mon Weather Rev 130:339–356

    Article  Google Scholar 

  • Zadra A, Roch M, Laroche S, Charron M (2003) The subgrid- scale orographic blocking parametrization of the GEM Model. Atmos Ocean 41:155–170

    Article  Google Scholar 

  • Zadra A, Caya D, Côté J, Dugas B, Jones C, Laprise R, Winger K, Caron L-P (2008) The next Canadian regional c1imate model. Phys Canada 64:74–83

    Google Scholar 

  • Zadra A, McTaggart-Cowan R, Roch M (2012) Recent changes to the orographic blocking. Seminar presentation, RPN, Dorval, Canada, 30 March 2012. 30/Seminar_2012-03-30_Ayrton-Zadra.pdf. Accessed 19 July 2012

Download references

Acknowledgments

The computations were made on the Guillimin high-performance computing platforms, through the CLUMEQ Consortium, which is part of Compute Canada and a member of Calcul Québec.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adelina Alexandru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandru, A., Sushama, L. Impact of land-use and land-cover changes on CRCM5 climate projections over North America for the twenty-first century. Clim Dyn 47, 1197–1209 (2016). https://doi.org/10.1007/s00382-015-2896-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2896-3

Keywords