Abstract
Identification of older people most at risk of falling may facilitate early preventative intervention to reduce the likelihood of falls occurring. While many clinical fall risk assessment techniques exist, they often require subjective assessor interpretation, or are not appropriate for unsupervised screening of larger populations owing to a number of issues including safety, ability to reliably perform the assessment, and requirements for unwieldy apparatus. Researchers have more recently attempted to address some of these deficits by instrumenting new or existing physical fall risk assessments with wearable motion sensors to make such assessments more objective, quicker to administer, and potentially more appropriate for deployment for unsupervised use in the community. The objective of this paper is to discuss various practical questions involving sensor-based fall risk assessment (SFRA). Many of the issues discussed contribute to answering the important question of whether SFRA should or can be used in either a supervised or an unsupervised manner, and what possible deployment scenarios exist for it.
Zusammenfassung
Die Identifikation von älteren Personen mit hohem Sturzrisiko ermöglicht rechtzeitige Präventionsmaßnahmen zur Verringerung der Zahl von Sturzereignissen. Viele der existierenden klinischen Verfahren zur Bestimmung des Sturzrisikos beinhalten die subjektive Interpretation des Untersuchers und sind aus Gründen der Sicherheit, der verlässlichen Durchführbarkeit oder notwendiger apparativer Voraussetzungen nicht für eine Anwendung bei großen Kohorten im nichtklinischen Umfeld geeignet. Wissenschaftler versuchen daher seit einiger Zeit, einige der genannten Defizite durch die Ausstattung mit tragbaren Bewegungssensoren bei der Durchführung existierender oder neuer Verfahren auszugleichen. Diese sollen das Verfahren objektiver, einfacher anwendbar und für die potenzielle nichtklinische Verwendung geeigneter gestalten. Ziel dieses Beitrags ist die Diskussion praktischer Fragen zur Anwendung der sensorbasierten Sturzrisikobestimmung. Besonderes Augenmerk wird auf die wichtigen Fragen gelegt, ob ein solches Verfahren supervidiert oder nicht supervidiert durchgeführt werden kann/sollte und welche möglichen Einsatzszenarien hierfür bestehen.
Similar content being viewed by others
References
American Geriatrics Society, the British Geriatrics Society, and the American Academy of Orthopaedic Surgeons (2009) Prevention of falls in older persons—AGS BGS clinical practice guideline. In: http://www.medcats.com/FALLS/frameset.htm. Accessed 25 July 2012
Australian Commission on Safety and Quality in Health Care (2009) Preventing falls and harm from falls in older people: best practice guidelines for Australian community care. Commonwealth Government, Canberra, Australian Capital Territory
Beauchet O, Annweiler C, Allali G et al (2010) Dual-task related gait changes and risk of falls: a systematic review. Neurology 74:A532–A532
Bergmann J, McGregor A (2011) Body-worn sensor design: what do patients and clinicians want? Ann Biomed Eng 39:2299–2312
Bohannon RW (2006) Reference values for the timed up and go test: a descriptive meta-analysis. J Geriatr Phys Ther 29:64–68
Gates S, Smith LA, Fisher JD et al (2008) Systematic review of accuracy of screening instruments for predicting fall risk among independently living older adults. J Rehabil Res Dev 45:1105–1116
Graham JE, Ostir GV, Fisher SR et al (2008) Assessing walking speed in clinical research: a systematic review. J Eval Clin Pract 14:552–562
Greene BR, Doheny EP, Walsh C et al (2012) Evaluation of falls risk in community-dwelling older adults using body-worn sensors. Gerontology 58:472–480
Haines TP, Hill K, Walsh W et al (2007) Design-related bias in hospital fall risk screening tool predictive accuracy evaluations: systematic review and meta-analysis. J Gerontol A Biol Sci Med Sci 62:664–672
Härlein J, Dassen T, Halfens RJG et al (2009) Fall risk factors in older people with dementia or cognitive impairment: a systematic review. J Adv Nurs 65:922–933
Hausdorff JM, Rios DA, Edelberg HK (2001) Gait variability and fall risk in community-living older adults: A 1-year prospective study. Arch Phys Med Rehabil 82:1050–1056
Herman T, Giladi N, Hausdorff JM (2011) Properties of the ‘timed up and go’ test: more than meets the eye. Gerontology 57:203–210
Kirchhoff M, Melin A (2011) Screening for fall risk in the elderly in the capital rregion of Copenhagen: the need for fall assessment exceeds the present capacity. Dan Med Bull 58:A4324
Köpke S, Meyer G (2006) The Tinetti test. Z Gerontol Geriatr 39:288–291
Laessoe U, Hoeck HC, Simonsen O et al (2007) Fall risk in an active elderly population—can it be assessed? J Negat Results Biomed 6:2
Lamb SE, Jorstad-Stein EC, Hauer K et al (2005) Development of a common outcome data set for fall injury prevention trials: the Prevention of Falls Network Europe consensus. J Am Geriatr Soc 53:1618–1622
Liu Y, Redmond SJ, Ning W et al (2011) Spectral analysis of accelerometry signals from a directed-routine for falls-risk estimation. IEEE Trans Biomed Eng 58:2308–2315
Lord SR, Menz HB, Tiedemann A (2003) A physiological profile approach to falls risk assessment and prevention. Phys Ther 83:237–252
Marschollek M, Rehwald A, Wolf KH et al (2011) Sensor-based fall risk assessment—an expert ‘to go’. Methods Inf Med 50:420–426
Mathie MJ, Coster ACF, Lovell NH et al (2004) A pilot study of long-term monitoring of human movements in the home using accelerometry. J Telemed Telecare 10:144–151
Ni Scanaill C, Garattini C, Greene BR et al (2011) Technology innovation enabling falls risk assessment in a community setting. Ageing Int 36:217–231
Oliver D, Healey F, Haines TP (2010) Preventing falls and fall-related injuries in hospitals. Clin Geriatr Med 26:645–692
Oliver D, Healy F (2009) Falls risk prediction tools for hospital inpatients: do they work? Nurs Times 105:18–21
Peel NM (2011) Epidemiology of falls in older age. Can J Aging 30:7–19
Perell KL, Nelson A, Goldman RL et al (2001) Fall risk assessment measures: an analytic review. J Gerontol A Biol Sci Med Sci 56:M761–M766
Senden R, Savelberg HHCM, Grimm B et al (2012) Accelerometry-based gait analysis, an additional objective approach to screen subjects at risk for falling. Gait Posture 36:296–300
Shany T, Redmond SJ, Narayanan MR et al (2012) Sensors-based wearable systems for monitoring of human movement and falls. IEEE Sens J 12:658–670
Tiedemann A, Lord SR, Sherrington C (2010) The development and validation of a brief performance-based fall risk assessment tool for use in primary care. J Gerontol A Biol Sci Med Sci 65A:896–903
Tiedemann A, Shimada H, Sherrington C et al (2008) The comparative ability of eight functional mobility tests for predicting falls in community-dwelling older people. Age Ageing 37:430–435
Tinetti ME (1986) Performance-oriented assessment of mobility problems in elderly patients. J Am Geriatr Soc 34:119–126
Vellas BJ, Wayne SJ, Romero L et al (1997) One-leg balance is an important predictor of injurious falls in older persons. J Am Geriatr Soc 45:735–738
Yogev-Seligmann G, Hausdorff JM, Giladi N (2008) The role of executive function and attention in gait. Mov Disord 23:329–342
Zijlstra W, Aminian K (2007) Mobility assessment in older people: new possibilities and challenges. Eur J Ageing 4:3–12
Conflict of interest
On behalf of all authors, the corresponding author states that there are no conflicts of interest.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Shany, T., Redmond, S., Marschollek, M. et al. Assessing fall risk using wearable sensors: a practical discussion. Z Gerontol Geriat 45, 694–706 (2012). https://doi.org/10.1007/s00391-012-0407-2
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00391-012-0407-2