Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Probing of the magnetic responsive behavior of magnetorheological organogel under step field perturbation

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The magnetic response of magnetorheological organogels is investigated by using a commercial plate-plate magnetorheometer at oscillatory shear. The experimental characteristic time results show that the field-induced aggregation of iron particles can be accelerated by increasing the strength of field. In contrast, the gel structure of matrix could hinder the particle motion and the microstructure development. The fast aggregation process dominates in the contribution to the total growth of storage modulus. Nonetheless, this contribution of fast process decreases with increasing the gelator content, and in the meanwhile, the corresponding proportion of slow aggregation process increases. The rearrangement from on-state structures to another on-state structures take a longer time than the off-on response as verified in the pre-magnetization tests. The particle aggregation induced by magnetic field is thermally influenced due to the temperature sensibility of the matrix. The periodical step magnetic field perturbation tests suggest that response is reversible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Olabi AG, Grunwald A (2007) Design and application of magneto-rheological fluid. Mater Design 28(10):2658–2664. https://doi.org/10.1016/j.matdes.2006.10.009

    Article  CAS  Google Scholar 

  2. Park BJ, Fang FF, Choi HJ (2010) Magnetorheology: materials and application. Soft Matter 6(21):5246–5253. https://doi.org/10.1039/c0sm00014k

    Article  CAS  Google Scholar 

  3. De Vicente J, Klingenberg DJ, Hidalgo-Alvarez R (2011) Magnetorheological fluids: a review. Soft Matter 7(8):3701–3710. https://doi.org/10.1039/c0sm01221a

  4. Bica I, Liu YD, Choi HJ (2013) Physical characteristics of magnetorheological suspensions and their applications. J Ind Eng Chem 19(2):394–406. https://doi.org/10.1016/j.jiec.2012.10.008

    Article  CAS  Google Scholar 

  5. Rao PV, Maniprakash S, Srinivasan SM et al (2010) Functional behavior of isotropic magnetorheological gels. Smart Mater Struct 19(8):085019

    Article  Google Scholar 

  6. An H, Picken SJ, Mendes E (2010) Enhanced hardening of soft self-assembled copolymer gels under homogeneous magnetic fields. Soft Matter 6(18):4497–4503. https://doi.org/10.1039/c0sm00216j

    Article  CAS  Google Scholar 

  7. Kavlicoglu BM, Gordaninejad F, Wang X (2013) Study of a magnetorheological grease clutch. Smart Mater Struct 22(12):125030. https://doi.org/10.1088/0964-1726/22/12/125030

    Article  Google Scholar 

  8. Mohamad N, Mazlan SA, Choi SB, Nordin MFM (2016) The field-dependent rheological properties of magnetorheological grease based on carbonyl-iron-particles. Smart Mater Struct 25(9):095043. https://doi.org/10.1088/0964-1726/25/9/095043

    Article  Google Scholar 

  9. Oguro T, Kanauchi S, Mitsumata T, Tamesue S, Yamauchi T (2014) Enhanced magnetoelastic behavior of magnetic elastomers with layered structure. Chem Lett 43(12):1885–1886. https://doi.org/10.1246/cl.140723

    Article  CAS  Google Scholar 

  10. B. Mordina, R. K. Tiwari, D. K. Setua, and A. Sharma, Magnetorheology of polydimethylsiloxane elastomer/FeCo3 nanocomposite, The J Phys Chem C, 2014, 118(44), 25684–25703, DOI: https://doi.org/10.1021/jp507005s

  11. Bastola AK, Hoang VT, Li L (2017) A novel hybrid magnetorheological elastomer developed by 3D printing. Mater Design 114:391–397. https://doi.org/10.1016/j.matdes.2016.11.006

    Article  CAS  Google Scholar 

  12. Ji EK, Choi HJ (2011) Magnetic carbonyl iron particle dispersed in viscoelastic fluid and its magnetorheological property. IEEE Trans Magn 47(10):3173–3176

    Article  Google Scholar 

  13. Gong XL, Zhang XZ, Zhang PQ (2005) Fabrication and characterization of isotropic magnetorheological elastomers. Polym Test 24(5):669–676. https://doi.org/10.1016/j.polymertesting.2005.03.015

    Article  CAS  Google Scholar 

  14. Chen L, Gong XL, Li WH (2007) Microstructures and viscoelastic properties of anisotropic magnetorheological elastomers. Smart Mater Struct 16(6):2645–2650. https://doi.org/10.1088/0964-1726/16/6/069

    Article  Google Scholar 

  15. Kaleta J, Królewicza M, Lewandowski D (2011) Magnetomechanical properties of anisotropic and isotropic magnetorheological composites with thermoplastic elastomer matrices. Smart Mater Struct 20(8):085006. https://doi.org/10.1088/0964-1726/20/8/085006

    Article  Google Scholar 

  16. Lokander M, Stenberg B (2003) Improving the magnetorheological effect in isotropic magnetorheological rubber materials. Polym Test 22(6):677–680. https://doi.org/10.1016/S0142-9418(02)00175-7

    Article  CAS  Google Scholar 

  17. Kimura Y, Kanauchi S, Kawai M, Mitsumata T, Tamesue S, Yamauchi T (2015) Effect of plasticizer on the magnetoelastic behavior for magnetic polyurethane elastomers. Chem Lett 44(2):177–178. https://doi.org/10.1246/cl.140932

    Article  CAS  Google Scholar 

  18. Nanpo J, Kawai M, Mitsumata T (2016) Magnetic-field sensitivity for magnetic elastomers with various elasticities. Chem Lett 45(7):785–786. https://doi.org/10.1246/cl.160363

    Article  CAS  Google Scholar 

  19. Felicia LJ, Philip J (2015) Effect of hydrophilic silica nanoparticles on the magnetorheological properties of ferrofluids: a study using opto-magnetorheometer. Langmuir 31(11):3343–3353. https://doi.org/10.1021/acs.langmuir.5b00103

    Article  CAS  Google Scholar 

  20. Mitsumata T, Nagata A, Sakai K, Takimoto JI (2005) Giant complex modulus reduction of κ-carrageenan magnetic gels. J Macromol Rapid Comm 26(19):1538–1541

    Article  CAS  Google Scholar 

  21. Mitsumata T, Okazaki T (2007) Magnetization-induced reduction in dynamic modulus of polyurethane elastomers loaded with ferrite. Jpn J Appl Phys 46(7R):4220–4224. https://doi.org/10.1143/JJAP.46.4220

    Article  CAS  Google Scholar 

  22. Nagashima K, Kawai M, Mitsumata T (2016) Amphoteric response of loss factor for bimodal magnetic elastomers by magnetic fields. Chem Lett 45(8):1033–1034. https://doi.org/10.1246/cl.160327

    Article  CAS  Google Scholar 

  23. Rich JP, McKinley GH, Doyle PS (2012) Arrested chain growth during magnetic directed particle assembly in yield stress matrix fluids. Langmuir 28(8):3683–3689. https://doi.org/10.1021/la204240f

    Article  CAS  Google Scholar 

  24. Koo JH, Goncalves FD, Ahmadian M (2006) A comprehensive analysis of the response time of MR dampers. Smart Mater Struct 15(2):351–358. https://doi.org/10.1088/0964-1726/15/2/015

    Article  Google Scholar 

  25. Laun HM, Gabriel C (2007) Measurement modes of the response time of a magneto-rheological fluid (MRF) for changing magnetic flux density. Rheol Acta 46(5):665–676. https://doi.org/10.1007/s00397-006-0155-6

    Article  CAS  Google Scholar 

  26. Sahin H, Gordaninejad F, Wang X, Liu Y (2012) Response time of magnetorheological fluids and magnetorheological valves under various flow conditions. J Intel Mater Syst Str 23(9):949–957. https://doi.org/10.1177/1045389X12447984

    Article  Google Scholar 

  27. Kikuchi T, Noma J, Akaiwa S, Ueshima Y (2016) Response time of magnetorheological fluid-based haptic device. J Intel Mater Syst Str 27(7):859–865. https://doi.org/10.1177/1045389X15596621

    Article  CAS  Google Scholar 

  28. Claracq J, Sarrazin J, Montfort JP (2004) Viscoelastic properties of magnetorheological fluids. Rheol Acta 43(1):38–49. https://doi.org/10.1007/s00397-003-0318-7

    Article  CAS  Google Scholar 

  29. An HN, Sun B, Picken SJ, Mendes E (2012) Long time response of soft magnetorheological gels. J Phys Chem B 116(15):4702–4711. https://doi.org/10.1021/jp301482a

    Article  CAS  Google Scholar 

  30. Belyaeva IA, Kramarenko EY, Stepanov GV, Sorokin VV (2016) Transient magnetorheological response of magnetoactive elastomers to step and pyramid excitations. Soft Matter 12(11):2901–2913. https://doi.org/10.1039/C5SM02690C

    Article  CAS  Google Scholar 

  31. Yang J, Yan H, Zhang H, Wang X (2016) Oil organogel system for magnetorheological fluid. RSC Adv 6(114):113463–113468. https://doi.org/10.1039/C6RA24257J

    Article  CAS  Google Scholar 

  32. Laun HM, Schmidt G, Gabriel C, Kieburg C (2008) Reliable plate–plate MRF magnetorheometry based on validated radial magnetic flux density profile simulations. Rheol Acta 47(9):1049–1059. https://doi.org/10.1007/s00397-008-0305-0

    Article  CAS  Google Scholar 

  33. Min TH, Choi HJ, Kim NH, Park K, You CY (2017) Effects of surface treatment on magnetic carbonyl iron/polyaniline microspheres and their magnetorheological study. Colloids Surf A Physicochem Eng Aspects 531:48–55. https://doi.org/10.1016/j.colsurfa.2017.07.070

    Article  CAS  Google Scholar 

  34. Fang FF, Liu YD, Choi HJ, Seo Y (2011) Core–shell structured carbonyl iron microspheres prepared via dual-step functionality coatings and their magnetorheological response. ACS Appl Mater Interfaces 3(9):3487–3495. https://doi.org/10.1021/am200714p

    Article  CAS  Google Scholar 

  35. Yang J, Yan H, Dai J, Hu Z, Zhang H (2017) The rheological response of carbonyl iron particles suspended in mineral oil solution of 12-hydroxy stearic acid. J Rheol 61(3):515–524. https://doi.org/10.1122/1.4980044

    Article  CAS  Google Scholar 

  36. Mitsumata T, Honda A, Kanazawa H, Kawai M (2012) Magnetically tunable elasticity for magnetic hydrogels consisting of carrageenan and carbonyl iron particles. J PhysChem B 116(40):12341–12348

    CAS  Google Scholar 

  37. Haghgooie R, Doyle PS (2007) Transition from two-dimensional to three-dimensional behavior in the self-assembly of magnetorheological fluids confined in thin slits. Phys Rev E 75(6):061406. https://doi.org/10.1103/PhysRevE.75.061406

    Article  Google Scholar 

  38. Moctezuma RE, Donado F, Arauz-Lara JL (2013) Lateral aggregation induced by magnetic perturbations in a magnetorheological fluid based on non-Brownian particles. Phys Rev E 88(3):032305. https://doi.org/10.1103/PhysRevE.88.032305

    Article  CAS  Google Scholar 

  39. Terech P, Pasquier D, Bordas V, Rossat C (2000) Rheological properties and structural correlations in molecular organogels. Langmuir 16(10):4485–4494. https://doi.org/10.1021/la991545d

    Article  CAS  Google Scholar 

  40. Rogers MA, Wright AJ, Marangoni AG (2009) Nanostructuring fiber morphology and solvent inclusions in 12-hydroxystearic acid/canola oil organogels. Curr Opin Colloid 14(1):33–42

    Article  CAS  Google Scholar 

  41. Sherman SG, Powell LA, Becnel AC, Wereley NM (2015) Scaling temperature dependent rheology of magnetorheological fluids. J Appl Phys 117(17):17C751

    Article  Google Scholar 

  42. Shima P, Philip J (2011) Tuning of thermal conductivity and rheology of nanofluids using an external stimulus. J Phys Chem C 115(41):20097–20104. https://doi.org/10.1021/jp204827q

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Key Technology R&D Program (No. 2012BAF06B04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Yan, H., Niu, F. et al. Probing of the magnetic responsive behavior of magnetorheological organogel under step field perturbation. Colloid Polym Sci 296, 309–317 (2018). https://doi.org/10.1007/s00396-017-4249-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4249-8

Keywords