Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Peralkaline magma evolution and the tephra record in the Ethiopian Rift

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The 3.119 ± 0.010 Ma Chefe Donsa phreatomagmatic deposits on the shoulder of the Ethiopian Rift mark the northern termination of the Silti-Debre Zeyit Fault Zone, a linear zone of focused extension within the modern Ethiopian Rift. These peralkaline pumice fragments and glass shards span a wide range of glass compositions but have a restricted phenocryst assemblage dominated by unzoned sanidine. Glass shards found within the ash occupy a far more limited compositional range (75–76 wt% SiO2) in comparison with the pumice (64–75 wt% SiO2), which is rarely mingled. Thermodynamic modeling shows that liquids broadly similar to the least evolved glass composition can be achieved with 50–60 % fractionation of moderately crustally contaminated basalt. Inconsistencies between modeled solutions and the observed values of CaO and P2O5 highlight the important role of fluorine in stabilizing fluor-apatite and the limitations of current thermodynamic models largely resulting from the scarce experimental data available for the role of fluorine in igneous phase stability. On the basis of limited feldspar heterogeneity and crystal content of pumice at Chefe Donsa, and the difficulties of extracting small volumes of Si-rich melt in classical fractional crystallization models, we suggest a two-step polybaric process: (1) basaltic magma ponds at mid-upper-crustal depths and fractionates to form a crystal/magma mush. Once this mush has reached 50–60 % crystallinity, the interstitial liquid may be extracted from the rigid crystal framework. The trachytic magma extracted at this step is equivalent to the most primitive pumice analyzed at Chefe Donsa. (2) The extracted trachytic liquid will rise and continue to crystallize, generating a second mush zone from which rhyolite liquids may be extracted. Some of the compositional range observed in the Chefe Donsa deposits may result from the fresh intrusion of trachyte magma, which may also provide an eruption trigger. This model may have wider application in understanding the origin of the Daly Gap in Ethiopian magmas—intermediate liquids may not be extracted from crystal-liquid mushes due to insufficient crystallization to yield a rigid framework. The wide range of glass compositions characteristic of the proximal Chefe Donsa deposits is not recorded in temporally equivalent tephra deposits located in regional depocenters. Our results show that glass shards, which represent the material most likely transported to distal depocenters, occupy a limited compositional range at high SiO2 values and overlap some distal tephra deposits. These results suggest that distal tephra deposits may not faithfully record the potentially wide range in magma compositions present in a magmatic system just prior to eruption and that robust distal–proximal tephra correlations must include a careful analysis of the full range of materials in the proximal deposit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Annen C, Sparks RSJ (2002) Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust. Earth Planet Sci Lett 203(3–4):937–955

    Article  Google Scholar 

  • Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47(3):505–539

    Article  Google Scholar 

  • Avanzinelli R, Bindi L, Menchetti S, Conticelli S (2004) Crystallisation and genesis of peralkaline magmas from Pantelleria Volcano, Italy: an integrated petrological and crystal-chemical study. Lithos 73(1–2):41–69

    Article  Google Scholar 

  • Ayalew D (2011) The relations between felsic and mafic volcanic rocks in continental flood basalts of Ethiopia: implication for the thermal weakening of the crust. In: Van Hinsbergen DJJ, Buiter SJH, Torsvik TH, Gaina C, Webb SJ (eds) The formation and evolution of Africa: a synopsis of 3.8 Ga of earth history. Geological Society, London, Special Publication, London, pp 253–264

  • Ayalew D, Ishiwatari A (2011) Comparison of rhyolites from continental rift, continental arc and oceanic island arc: implication for the mechanism of silicic magma generation. Island Arc 20:78–93

    Article  Google Scholar 

  • Bachmann O, Bergantz GW (2004) On the origin of crystal-poor rhyolite: extracted from batholithic crystal mushes. J Petrol 45(8):1565–1582

    Article  Google Scholar 

  • Bachmann O, Bergantz GW (2008) Rhyolites and their source mushes across tectonic settings. J Petrol 49(12):2277–2285

    Article  Google Scholar 

  • Barberi F, Ferrara G, Santacroce R, Treuil M, Varet J (1975) A transitional basalt-pantellerite sequence of fractional crystallization, the Boina Centre (Afar Rift, Ethiopia). J Petrol 16(1):22–56

    Google Scholar 

  • Bilham R, Bendick R, Larson K, Mohr P, Braun J, Tesfaye S, Asfaw L (1999) Secular and tidal strain across the main Ethiopian rift. Geophys Res Lett 26(18):2789–2792

    Article  Google Scholar 

  • Bonini M, Corti G, Innocenti F, Manetti P, Mazzarini F, Abebe T, Pecskay Z, (2005) Evolution of the Main Ethiopian Rift in the frame of Afar and Kenya rifts propagation. Tectonics, 24(1): TC1007, doi: 10.1029/2004TC00168

  • Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, New York

    Google Scholar 

  • Brown FH, Sarna-Wojcicki AM, Meyer CE, Haileab B (1992) Correlation of Pliocene and Pleistocene tephra layers between the Turkana Basin of East Africa and the Gulf of Aden. Quat Int 13–14:55–67

    Article  Google Scholar 

  • Buck WR (2004) Consequences of asthenospheric variability on continental rifting. In: Karner G, Taylor B, Driscoll NW, Kohlstedt DL (eds) Rheology and deformation of the lithosphere at continental margins. Columbia University Press, New York, pp 1–30

    Google Scholar 

  • Campisano C, Feibel CS (2008) Tephrostratigraphy of the Hadar and Busidima Formations at Hadar, Afar Depression, Ethiopia. In: Quade J, Wynn JG (eds) The geology of early humans in the horn of Africa, special paper 446. The Geological Society of America, Boulder, Co, pp 135–162

  • Casey M, Ebinger C, Keir D, Gloaguen R, Mohamed F (2006) Strain accommodation in transitional rifts: extension by magma intrusion and faulting in Ethiopian rift magmatic segments. In: Yirgu G, Ebinger C, Maguire P (eds) The Afar Volcanic Province within the East African Rift System. Geological Society, London, pp 143–164

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1996) An introduction to the rock-forming minerals, 2nd edn. Prentice Hall, New York

    Google Scholar 

  • Deering CD, Bachmann O, Dufek J, Gravley DM (2011a) Rift-related transition from andesite to rhyolite volcanism in the Taupo Volcanic Zone (New Zealand) controlled by crystal–melt dynamics in mush zones with variable mineral assemblages. J Petrol 52(11):2243–2263

    Article  Google Scholar 

  • Deering CD, Bachmann O, Vogel TA (2011b) The Ammonia Tanks Tuff: erupting a melt-rich rhyolite cap and its remobilized crystal cumulate. Earth Planet Sci Lett 310(3–4):518–525

    Article  Google Scholar 

  • DiMaggio EN, Campisano CJ, Arrowsmith JR, Reed KE, Swisher CC, III, Lockwood CA (2008) Correlation and stratigraphy of the BKT-2 volcanic complex in west-central Afar, Ethiopia. In: Quade J, Wynn JG (eds) The geology of early humans in the horn of Africa, special paper 446. Geological Society of America, Boulder, CO, pp 163–177

  • Dufek J, Bachmann O (2010) Quantum magmatism: magmatic compositional gaps generated by melt-crystal dynamics. Geology 38(8):687–690

    Article  Google Scholar 

  • Ebinger CJ, Casey M (2001) Continental breakup in magmatic provinces: an Ethiopian example. Geology 29(6):527–530

    Article  Google Scholar 

  • Feakins SJ, Brown FH, deMenocal PB (2007) Plio-Pleistocene microtephra in DSDP site 231, Gulf of Aden. J Afr Earth Sc 48(5):341–352

    Article  Google Scholar 

  • Furman T, Kaleta KM, Bryce JG, Hanan BB (2006) Tertiary mafic lavas of Turkana, Kenya: constraints on East African plume structure and the occurrence of high-mu volcanism in Africa. J Petrol 47(6):1221–1244

    Article  Google Scholar 

  • Gasparon M, Innocenti F, Manetti P, Peccerillo A, Tsegaye A (1993) Genesis of the Pliocene to Recent bimodal mafic-felsic volcanism in the Debre Zeyit area, central Ethiopia; volcanological and geochemical constraints. J Afr Earth Sci 17(2):145–165

    Article  Google Scholar 

  • George R, Rogers N, Kelley S (1998) Earliest magmatism in Ethiopia: evidence for two mantle plumes in one flood basalt province. Geology 26(10):923–926

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass-transfer in magmatic processes. 4. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated-temperatures and pressures. Contrib Miner Petrol 119(2–3):197–212

    Article  Google Scholar 

  • Gualda GAR, Ghiorso MS, Lemons RV, Carley TL (2012) Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. J Petrol. doi:10.1093/petrology/egr080

    Google Scholar 

  • Hall CM, Walter RC, Westgate JA, York D (1984) Geochronology, stratigraphy and geochemistry of Cindery Tuff in Pliocene hominid-bearing sediments of the Middle Awash, Ethiopia. Nature 308(5954):26–31

    Article  Google Scholar 

  • Hart WK, Woldegabriel G (2010) Tephra as Probes into magma system evolution and regional tectonomagmatic processes in the Ethiopian and Afar Rifts. INQUA/INTAV-J, 2010 Abstracts. Kirishima City, Japan

    Google Scholar 

  • Hart WK, Walter RC, WoldeGabriel G (1992) Tephra sources and correlations in Ethiopia: application of elemental and neodymium isotope data. Quat Int 13–14:77–86

    Article  Google Scholar 

  • Heumann A, Davies GR (2002) U-Th disequilibrium and Rb-Sr age constraints on the magmatic evolution of Peralkaline Rhyolites from Kenya. J Petrol 43(3):557–577

    Article  Google Scholar 

  • Hofmann C, Courtillot V, Feraud G, Rouchett P, Yirgu G, Ketefo E, Pik R (1997) Timing of the Ethiopian flood basalt event and implications for plume birth and global change. Nature 389(6653):838–841

    Article  Google Scholar 

  • Kieffer B, Arndt N, Lapierre H, Bastien F, Bosch D, Pecher A, Yirgu G, Ayalew D, Weis D, Jerram DA, Keller F, Meugniot C (2004) Flood and shield basalts from Ethiopia: magmas from the African superswell. J Petrol 45(4):793–834

    Article  Google Scholar 

  • Kleinsasser LL, Quade J, McIntosh WC, Levin NE, Simpson SW, Semaw S (2008) Stratigraphy and geochronology of the late Miocene Adu-Asa Formation at Gona, Ethiopia. In: Quade J, Wynn JG (eds) The geology of early humans in the horn of Africa. Geological Society of America Special Paper 446, Boulder, CO, pp 33–65

  • Lahitte P, Gillot P-Y, Courtillot V (2003) Silicic central volcanoes as precursors to rift propagation; the Afar case. Earth Planet Sci Lett 207(1–4):103–116

    Article  Google Scholar 

  • Le Maitre RW (2002) Igneous rocks: a classification and glossary of terms. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • MacDonald R, Scaillet B (2006) The central Kenya peralkaline province: insights into the evolution of peralkaline salic magmas. Lithos 91(1–4):59–73

    Article  Google Scholar 

  • MacDonald R, Davies GR, Bliss CM, Leat PT, Bailey DK, Smith RL (1987) Geochemistry of High-silica Peralkaline Rhyolites, Naivasha, Kenya Rift Valley. J Petrol 28(6):979–1008

    Google Scholar 

  • MacDonald R, Baginski B, Belkin HE, Dzierzanowski P, Jezak L (2008) REE partitioning between apatite and melt in a peralkaline volcanic suite, Kenya Rift Valley. Mineral Mag 72(6):1147–1161

    Article  Google Scholar 

  • Marshall AS, MacDonald R, Rogers NW, Fitton JG, Tindle AG, Nejbert K, Hinton RW (2009) Fractionation of Peralkaline Silicic Magmas: the Greater Olkaria Volcanic Complex, Kenya Rift Valley. J Petrol 50(2):323–359

    Article  Google Scholar 

  • Mohr PA (1961) The geology, structure, and origin of the Bishoftu explosion craters. Bull Geophys Obs 2(2):65–101

    Google Scholar 

  • Mohr PA (1967) Major volcano-tectonic lineament in the Ethiopian rift system. Nature 213(5077):664–665

    Article  Google Scholar 

  • Mohr P, Zanettin B (1988) The Ethiopian flood basalt province. In: MacDougall JD (ed) Continental flood basalts. Kluwer, Dordrecht, pp 63–110

    Google Scholar 

  • Morton WH, Rex DC, Mitchell JG, Mohr P (1979) Riftward younging of volcanic units in the Addis Ababa region, Ethiopian Rift valley. Nature 280(5720):284–288

    Article  Google Scholar 

  • Murphy MD, Sparks RSJ, Barclay J, Carroll MR, Brewer TS (2000) Remobilization of Andesite Magma by Intrusion of Mafic Magma at the Soufriere Hills Volcano, Montserrat, West Indies. J Petrol 41(1):21–42

    Article  Google Scholar 

  • Nakamura M (1995) Continuous mixing of crystal mush and replenished magma in the ongoing Unzen eruption. Geology 23(9):807–810

    Article  Google Scholar 

  • Pallister JS, Hoblitt RP, Reyes AG (1992) A basalt trigger for the 1991 eruptions of Pinatubo volcano? Nature 356(6368):426–428

    Article  Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25(4):956–983

    Google Scholar 

  • Peccerillo A, Barberio MR, Yirgu G, Ayalew D, Barbieri M, Wu TW (2003) Relationships between mafic and peralkaline silicic magmatism in continental rift settings: a petrological, geochemical and isotopic study of the Gedemsa volcano, central Ethiopian rift. J Petrol 44(11):2003–2032

    Article  Google Scholar 

  • Peccerillo A, Donati C, Santo AP, Orlando A, Yirgu G, Ayalew D (2007) Petrogenesis of silicic peralkaline rocks in the Ethiopian rift: geochemical evidence and volcanological implications. J Afr Earth Sci 48(2–3):161–173

    Google Scholar 

  • Perkins ME, Nash BP (2002) Explosive silicic volcanism of the Yellowstone hotspot: the ash fall tuff record. Geol Soc Am Bull 114(3):367–381

    Article  Google Scholar 

  • Roman DC, Campisano C, Quade J, DiMaggio E, Arrowsmith JR (2008) Composite tephrostratigraphy of the Dikika, Gona, Hadar, and Ledi-Geraru project areas, northern Awash, Ethiopia. In: Quade J, Wynn JG (eds) The geology of early humans in the horn of Africa, Special Paper 446. Geological Society of America, Boulder, Co, pp 119–134

  • Rooney TO (2010) Geochemical evidence of lithospheric thinning in the southern Main Ethiopian Rift. Lithos 117(1–4):33–48

    Article  Google Scholar 

  • Rooney T, Furman T, Yirgu G, Ayalew D (2005) Structure of the Ethiopian lithosphere: Xenolith evidence in the Main Ethiopian Rift. Geochim Cosmochim Acta 69(15):3889–3910

    Article  Google Scholar 

  • Rooney T, Furman T, Bastow ID, Ayalew D, Gezahegn Y (2007) Lithospheric modification during crustal extension in the Main Ethiopian Rift. J Geophys Res B Solid Earth Planets 112: B10201, doi:10.1029/2006JB004916

  • Rooney T, Sinha AK, Deering CD, Briggs C (2010) A model for the origin of rhyolites from South Mountain, Pennsylvania: implications for rhyolites associated with large igneous provinces. Lithosphere 2(4):211–220

    Article  Google Scholar 

  • Rooney TO, Bastow ID, Keir D (2011) Insights into extensional processes during magma assisted rifting: evidence from aligned scoria cones and maars. J Volcanol Geoth Res 201(1–4):83–96

    Article  Google Scholar 

  • Rooney TO, Hanan BB, Graham DW, Furman T, Blichert-Toft J, Schilling J-G (2012) Upper mantle pollution during afar plume–continental rift interaction. J Petrol 53:365–389

    Article  Google Scholar 

  • Ruprecht P, Bachmann O (2010) Pre-eruptive reheating during magma mixing at Quizapu volcano and the implications for the explosiveness of silicic arc volcanoes. Geology 38(10):919–922

    Article  Google Scholar 

  • Sarna-Wojcicki AM, Meyer CE, Roth PH, Brown FH (1985) Ages of tuff beds at East African early hominid sites and sediments in the Gulf of Aden. Nature 313(6000):306–308

    Article  Google Scholar 

  • Scaillet B, MacDonald R (2001) Phase relations of peralkaline silicic magmas and petrogenetic implications. J Petrol 42(4):825–845

    Article  Google Scholar 

  • Scaillet B, MacDonald R (2003) Experimental constraints on the relationships between peralkaline rhyolites of the Kenya rift valley. J Petrol 44(10):1867–1894

    Article  Google Scholar 

  • Shane P, Nairn IA, Martin SB, Smith VC (2008) Compositional heterogeneity in tephra deposits resulting from the eruption of multiple magma bodies: Implications for tephrochronology. Quat Int 178(1):44–53

    Article  Google Scholar 

  • Sparks SRJ, Sigurdsson H, Wilson L (1977) Magma mixing: a mechanism for triggering acid explosive eruptions. Nature 267(5609):315–318

    Article  Google Scholar 

  • Trua T, Deniel C, Mazzuoli R (1999) Crustal control in the genesis of Plio-Quaternary bimodal magmatism of the Main Ethiopian Rift (MER); geochemical and isotopic (Sr, Nd, Pb) evidence. Chem Geol 155(3–4):201–231

    Article  Google Scholar 

  • USGS (2004) Shuttle Radar Topography Mission 1 arc second scene unfilled, unfinished 2.0. Global Land Cover Facility, University of Maryland., College Park, Maryland

  • van Wyk de Vries B, Merle O (1998) Extension induced by volcanic loading in regional strike-slip zones. Geology 26(11):983–986

    Article  Google Scholar 

  • Walter RC, Aronson JL (1982) Revisions of K/Ar ages for the Hadar hominid site, Ethiopia. Nature 296(5853):122–127

    Article  Google Scholar 

  • Walter RC, Hart WK, Westgate JA (1987) Petrogenesis of a basalt-rhyolite tephra from the west-central Afar, Ethiopia. Contrib Miner Petrol 95(4):462–480

    Article  Google Scholar 

  • WoldeGabriel G, Aronson JL, Walter RC (1990) Geology, geochronology, and rift basin development in the central sector of the Main Ethiopia Rift. Geol Soc Am Bull 102(4):439–458

    Article  Google Scholar 

  • Woldegabriel G, Heiken G, White T, Asfaw B, Hart WK, Renne PR (2000) Volcanism, tectonism, sedimentation, and the paleoanthropological record in the Ethiopian Rift System. In: McCoy FW, Heiken G (eds) Volcanic hazards and disasters in human antiquity. Geological Society of America Special Paper 345, Boulder, CO, pp 83–99

  • WoldeGabriel G, Haile-Selassie Y, Renne PR, Hart WK, Ambrose SH, Asfaw B, Heiken G, White T (2001) Geology and palaeontology of the Late Miocene Middle Awash valley, Afar rift, Ethiopia. Nature 412(6843):175–178

    Article  Google Scholar 

  • WoldeGabriel G, Hart WK, Katoh S, Beyene Y, Suwa G (2005) Correlation of Plio-Pleistocene Tephra in Ethiopian and Kenyan rift basins: temporal calibration of geological features and hominid fossil records. J Volcanol Geoth Res 147(1–2):81–108

    Article  Google Scholar 

  • Wolfenden E, Ebinger C, Yirgu G, Deino A, Ayalew D (2004) Evolution of the northern Main Ethiopian rift: birth of a triple junction. Earth Planet Sci Lett 224(1–2):213–228

    Article  Google Scholar 

  • Yirgu G, Dereje A, Peccerillo A, Barberio MR, Donati C, Donato P (1999) Fluorine and chlorine distribution in the volcanic rocks from Gedemsa Volcano, Ethiopian Rift valley. Acta Vulcanol 11(1):169–176

    Google Scholar 

  • Zanettin B, Justin Visentin E, Nicoletti M, Piccirillo EM, Carrelli A (1979) Correlations among Ethiopian volcanic formations with special references to the chronological and stratigraphical problems of the “Trap Series”. Geodynamic evolution of the Afro-Arabian Rift System, 47: 231–252

Download references

Acknowledgments

Thoughtful comments by Olivier Bachmann and an anonymous reviewer helped improve the manuscript. We thank Timothy Grove for careful editorial handling and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tyrone O. Rooney.

Additional information

Communicated by T. L. Grove.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rooney, T.O., Hart, W.K., Hall, C.M. et al. Peralkaline magma evolution and the tephra record in the Ethiopian Rift. Contrib Mineral Petrol 164, 407–426 (2012). https://doi.org/10.1007/s00410-012-0744-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-012-0744-6

Keywords