Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

A phase dynamic model of systematic error in simple copying tasks

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

A crucial insight into handwriting dynamics is embodied in the idea that stable, robust handwriting movements correspond to attractors of an oscillatory dynamical system. We present a phase dynamic model of visuomotor performance involved in copying simple oriented lines. Our studies on human performance in copying oriented lines revealed a systematic error pattern in orientation of drawn lines, i.e., lines at certain orientation are drawn more accurately than at other values. Furthermore, human subjects exhibit “flips” in direction at certain characteristic orientations. It is argued that this flipping behavior has its roots in the fact that copying process is inherently ambiguous—a line of given orientation may be drawn in two different (mutually opposite) directions producing the same end result. The systematic error patterns seen in human copying performance is probably a result of the attempt of our visuomotor system to cope with this ambiguity and still be able to produce accurate copying movements. The proposed nonlinear phase-dynamic model explains the experimentally observed copying error pattern and also the flipping behavior with remarkable accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Athènes S, Sallagoïty I, Zanone P-G, Albaret J-M (2003) Universal features of handwriting: towards a non-linear model. In: Proceedings of the 11th conference of the international graphonomics society IGS2003, pp 46–49

  • Brown P (2000) Cortical drives to human muscle: the Piper and related rhythms. Prog Neurobiol 60: 97

    Article  PubMed  CAS  Google Scholar 

  • Dubey S, Sambaraju S, Cautha SC, Chakravarthy VS (2007) The enigmatic two-peak orientation error structure in copying simple line diagrams. In: Proceedings of the 13th international graphonomics society conference, Melbourne, Australia

  • Ekstrom AD, Caplan J, Ho E, Shattuck K, Fried I, Kahana MJ (2005) Human hippocampal theta activity during virtual navigation. Hippocampus 15: 881–889

    Article  PubMed  Google Scholar 

  • Gangadhar G, Chakravarthy VS (2005) An oscillatory neural network model for handwriting generation. In: Proceedings of the 12th biennial conference of the international graphonomics society, Salerno, Italy, 26–29 June 2005, pp 39–43

  • Gangadhar G, Jasti S, Chakravarthy VS (2005) A neural model of visuo-motor coordination in copying: implications to understanding dysgraphia. In: 12th international conference on biomedical engineering (ICBME 2005), Singapore, 6-8 December 2005

  • Gangadhar G, Joseph D, Chakravarthy VS (2007) An oscillatory neuromotor model of handwriting generation. Int J Doc Anal Recognit 10(2): 69–84

    Article  Google Scholar 

  • Grossberg S, Paine RW (2000) A neural model of cortico-cerebellar interactions during attentive imitation and predictive learning of sequential handwriting movements. Neural Netw 13: 999–1046

    Article  PubMed  CAS  Google Scholar 

  • Haken H, Kelso JAS, Bunz H (1985) A theoretical model of phase transitions in human hand movements. Biol Cybern 51: 347–356

    Article  PubMed  CAS  Google Scholar 

  • Hari R, Salenius S (1999) Rhythmical corticomotor communication. NeuroReport 10: R1

    Article  PubMed  CAS  Google Scholar 

  • Hollerbach M (1981) An oscillation theory of handwriting. Biol Cybern 39: 139–156

    Article  Google Scholar 

  • Irigoin J (1990) L’alphabet grec et son geste des origines au IXième siècle après J-C. In: Sirat J, Irigoin J, Poulle E (eds) L’écriture: le cerveau, l’oeil et la main. Bibliologia 10:299–305

  • Jacobs J, Kahana MJ, Ekstrom AD, Fried I (2007) Brain oscillations control timing of single-neuron activity in humans. J of Neurosci 27(14): 3839–3844

    Article  CAS  Google Scholar 

  • Jirsa VK, Kelso JAS (2005) The excitator as a minimal model for the coordination dynamics of discrete and rhythmic movement generation. J Mot Behav 37(1): 35–51

    Article  PubMed  Google Scholar 

  • Kahana MJ (2006) The cognitive correlates of human brain oscillations. J Neurosci 26(6): 1669–1672

    Article  PubMed  CAS  Google Scholar 

  • Kalveram KTh (1998) A neural oscillator model learning given trajectories, or how an allo-imitation algorithm can be implemented into a motor controller. In: Piek J (eds) Motor control and human skill: a multi-disciplinary perspective. Human Kinetics, Champaign

    Google Scholar 

  • Kelso JA (1999) Dynamic patterns, the self-organization of brain and behavior. A Bradford book. The MIT Press, Cambridge, Massachusetts, London, England

    Google Scholar 

  • Kelso JAS, Jeka JJ (1992) Symmetry breaking dynamic of human multilimb coordination. J Exp Psychol Hum Percept Perform 18: 645–668

    Article  PubMed  CAS  Google Scholar 

  • MacKay WA (2005) Wheels of motion: oscillatory potentials in the motor cortex. In: Riehle A, Vaadia E (eds) Motor cortex in voluntary movements: a distributed system for distributed functions. CRC Press, pp 181–211

  • Makeig S, Westerfield M, Jung T-P, Enghoff S, Townsend J, Courchesne E, Sejnowski TJ (2002) Dynamic brain sources of visual evoked responses. Science 295: 690–694

    Article  PubMed  CAS  Google Scholar 

  • Meulenbroek J, Thomassen M (1991) Stroke-direction preferences in drawing and handwriting. Hum Mov Sci 10: 247–270

    Article  Google Scholar 

  • Meulenbroek RGJ, Thomassen AJWM (1993) Exploitation of elasticity as a biomechanical property, in the production of graphic stroke sequences. Acta Psychol 82: 313–327

    Article  CAS  Google Scholar 

  • Meulenbroek RGJ, Vinter A, Desbiez D (1998) Exploitation of elasticity in copying geometrical patterns: The role of age, movement amplitude, and limb-segment Involvement. Acta Psychol 99: 329–345

    Article  CAS  Google Scholar 

  • Murray JD (1989) Mathematical biology. Springer-Verlag

  • O’Keefe J, Recce ML (1993) Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3: 317–330

    Article  PubMed  Google Scholar 

  • Popivanov D, Mineva A, Krekule I (1999) EEG patterns in theta and gamma frequency range and their probable relation to human voluntary movement organization. Neurosci Lett 267: 5

    Article  PubMed  CAS  Google Scholar 

  • Rizzuto DS, Madsen JR, Bromfield EB, Schulze-Bonhage A, Seelig D, Aschenbrenner-Scheibe R, Kahana MJ (2003) Reset of human neocortical oscillations during a working memory task. Proc Natl Acad Sci USA 100(13): 7931–7936

    Article  PubMed  CAS  Google Scholar 

  • Rosenbaum DA, van Heugten CM, Caldwell GE (1996) From cognition to biomechanics and back: the end-state comfort effect and the middle-is-faster effect. Acta Psychol (Amst) 94: 59–85

    Article  CAS  Google Scholar 

  • Sallagoïty I, Athènes S, Zanone P-G, Albaret J-M (2004) Stability of coordination patterns in handwriting: effects of speed and hand. Motor Control 8: 405–421

    PubMed  Google Scholar 

  • Schmidt RC, Carello C, Turvey MT (1990) Phase transitions and critical fluctuations in the visual coordination of rhythmic movements between people. Journal of Experimental Psychology: Human Perception and Performance 16: 227–247

    Article  PubMed  CAS  Google Scholar 

  • Schomaker LRB (1991) Simulation and recognition of handwriting movements: a vertical approach to modeling human motor behavior. Ph.D. Thesis, Nijmegen University, Netherlands

  • Schoner G, Jian WY, Kelso JAS (1990) A synergetic theory of quadrupedal gaits and gait transitions. J Theor Biol 142: 359–393

    Article  PubMed  CAS  Google Scholar 

  • Tuller B, Kelso JAS (1990) Phase transitions in speech production and their perceptual consequences. In: Jeannerod M (eds) Attention and Performance XIII. Erlbaum, Hillsdale, NJ, pp 429–452

    Google Scholar 

  • van Sommers P (1984) Drawing and cognition: Descriptive and experimental studies of graphic production processes. Cambridge University Press, New York

    Google Scholar 

  • Zanone PG, Athènes S, Sallagoïty I, Albaret J-M (2005) Switching among graphic patterns is governed by coordination dynamics of handwriting. International Graphonomic Society (IGS-2005), Salerno (Italy)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Chakravarthy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubey, S., Sambaraju, S., Cautha, S.C. et al. A phase dynamic model of systematic error in simple copying tasks. Biol Cybern 101, 201–213 (2009). https://doi.org/10.1007/s00422-009-0330-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-009-0330-9

Keywords