Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Bifurcations of lurching waves in a thalamic neuronal network

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We consider a two-layer, one-dimensional lattice of neurons; one layer consists of excitatory thalamocortical neurons, while the other is comprised of inhibitory reticular thalamic neurons. Such networks are known to support “lurching” waves, for which propagation does not appear smooth, but rather progresses in a saltatory fashion; these waves can be characterized by different spatial widths (different numbers of neurons active at the same time). We show that these lurching waves are fixed points of appropriately defined Poincaré maps, and follow these fixed points as parameters are varied. In this way, we are able to explain observed transitions in behavior, and, in particular, to show how branches with different spatial widths are linked with each other. Our computer-assisted analysis is quite general and could be applied to other spatially extended systems which exhibit this non-trivial form of wave propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold VI (1965) Small denominators. I: mappings of the circumference onto itself. Am Math Soc 46: 213–284

    Google Scholar 

  • Aronson DG, Golubitsky M, Mallet-Paret J (1991) Ponies on a merry-go-round in large arrays of Josephson junctions. Nonlinearity 4: 903–910

    Article  Google Scholar 

  • Baer SM, Rinzel J (1991) Propagation of dendritic spikes mediated by excitable spines: a continuum theory. J Neurophysiol 65(4): 874–890

    CAS  PubMed  Google Scholar 

  • Bressloff PC (2001) Traveling fronts and wave propagation failure in an inhomogeneous neural network. Phys D 155(1–2): 83–100

    Article  Google Scholar 

  • Coombes S (2003) Dynamics of synaptically coupled integrate-and-fire-or-burst neurons. Phys Rev E 67: 041910

    Article  CAS  Google Scholar 

  • Coombes S (2005) Waves, bumps, and patterns in neural field theories. Biol Cybern 93(2): 91–108

    Article  CAS  PubMed  Google Scholar 

  • Coombes S, Bressloff PC (2003) Saltatory waves in the spike-diffuse-spike model of active dendritic spines. Phys Rev Lett 91(2): 28102

    Article  CAS  Google Scholar 

  • Coombes S, Laing CR (2010) Pulsating fronts in periodically modulated neural field models (submitted)

  • Destexhe A, Bal T, McCormick DA, Sejnowski TJ (1996) Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. J Neurophysiol 76(3): 2049

    CAS  PubMed  Google Scholar 

  • Ermentrout B (1998) Neural networks as spatio-temporal pattern-forming systems. Rep Prog Phys 61: 353–430

    Article  Google Scholar 

  • Ermentrout GB, Kleinfeld D (2001) Traveling electrical waves in cortex: insights from phase dynamics and speculation on a computational role. Neuron 29(1): 33–44

    Article  CAS  PubMed  Google Scholar 

  • Ermentrout GB, Rinzel J (1984) Beyond a pacemaker’s entrainment limit: phase walk-through. Am J Physiol 246(1): 102

    Google Scholar 

  • Golomb D, Amitai Y (1997) Propagating neuronal discharges in neocortical slices: Computational and experimental study. J Neurophysiol 78: 1199–1211

    CAS  PubMed  Google Scholar 

  • Golomb D, Ermentrout GB (1999) Continuous and lurching traveling pulses in neuronal networks with delay and spatially decaying connectivity. Proc Natl Acad Sci USA 96: 13480–13485

    Article  CAS  PubMed  Google Scholar 

  • Golomb D, Ermentrout GB (2000) Effects of delay on the type and velocity of travelling pulses in neuronal networks with spatially decaying connectivity. Netw Comput Neural Syst 11(3): 221–246

    Article  CAS  Google Scholar 

  • Golomb D, Ermentrout GB (2001) Bistability in pulse propagation in networks of excitatory and inhibitory populations. Phys Rev Lett 86(18): 4179–4182

    Article  CAS  PubMed  Google Scholar 

  • Golomb D, Wang X-J, Rinzel J (1996) Propagation of spindle waves in a thalamic slice model. J Neurophysiol 75: 750–769

    CAS  PubMed  Google Scholar 

  • Guckenheimer J, Holmes P (1990) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer-Verlag, New York

    Google Scholar 

  • Hall GR (1984) Resonance zones in two-parameter families of circle homeomorphisms. SIAM J Math Anal 15: 1075–1081

    Article  Google Scholar 

  • Huang X, Troy WC, Yang Q, Ma H, Laing CR, Schiff SJ, Wu J-Y (2004) Spiral waves in disinhibited mammalian neocortex. J Neurosci 24(44): 9897

    Article  CAS  PubMed  Google Scholar 

  • Keener JP (2000) Propagation of waves in an excitable medium with discrete release sites. SIAM J Appl Math 61: 317–334

    Article  CAS  Google Scholar 

  • Kim U, Bal T, McCormick DA (1995) Spindle waves are propagating synchronized oscillations in the ferret LGNd in vitro. J Neurophysiol 74(3): 1301

    CAS  PubMed  Google Scholar 

  • Krishnan J, Engelborghs K, Bär M, Lust K, Roose D, Kevrekidis IG (2001) A computer-assisted study of pulse dynamics in anisotropic media. Phys D 154: 85–110

    Article  Google Scholar 

  • Kuznetsov YA (2004) Elements of applied bifurcation theory, 3rd edn. Springer-Verlag, Berlin

    Google Scholar 

  • Laing CR (2005) Spiral waves in nonlocal equations. SIAM J Appl Dyn Syst 4(3): 588–606

    Article  Google Scholar 

  • Laing C, Coombes S (2006) The importance of different timings of excitatory and inhibitory pathways in neural field models. Netw Comput Neural Syst 17(2): 151–172

    Article  Google Scholar 

  • Laing CR, Kevrekidis IG (2008) Periodically-forced finite networks of heterogeneous globally-coupled oscillators: A low-dimensional approach. Phys D 237(2): 207–215

    Article  Google Scholar 

  • Leis JR, Kramer MA (1988) An ordinary differential equation solver with explicit simultaneous sensitivity analysis. ACM Trans Math Software 14: 6167

    Google Scholar 

  • Lord GJ, Coombes S (2002) Traveling waves in the Baer and Rinzel model of spine studded dendritic tissue. Phys D 161: 1–20

    Article  CAS  Google Scholar 

  • Owen MR, Laing CR, Coombes S (2007) Bumps and rings in a two-dimensional neural field: splitting and rotational instabilities. New J Phys 9: 378

    Article  Google Scholar 

  • Pinto DJ, Ermentrout GB (2001) Spatially structured activity in synaptically coupled neuronal networks: I. traveling fronts and pulses. SIAM J Appl Math 62(1): 206–225

    Article  Google Scholar 

  • Prat A, Li Y-X (2003) Stability of front solutions in inhomogeneous media. Phys D 186(1–2): 50–68

    Article  Google Scholar 

  • Prechtl JC, Cohen LB, Pesaran B, Mitra PP, Kleinfeld D (1997) Visual stimuli induce waves of electrical activity in turtle cortex. Proc Natl Acad Sci USA 94(14): 7621–7626

    Article  CAS  PubMed  Google Scholar 

  • Rinzel J, Terman D, Wang X-J, Ermentrout B (1998) Propagating activity patterns in large-scale inhibitory neuronal networks. Science 279: 1351–1355

    Article  CAS  PubMed  Google Scholar 

  • Runborg O, Theodoropoulos C, Kevrekidis IG (2002) Effective bifurcation analysis: a time-stepper-based approach. Nonlinearity 15(2): 491–512

    Article  Google Scholar 

  • Terman DH, Ermentrout GB, Yew AC (2001) Propagating activity patterns in thalamic neuronal networks. SIAM J Appl Math 61: 1578–1604

    Article  Google Scholar 

  • Wu J-Y, Guan L, Tsau Y (1999) Propagating activation during oscillations and evoked responses in neocortical slices. J Neurosci 19(12): 5005–5015

    CAS  PubMed  Google Scholar 

  • Wu J-Y, Xiaoying H, Chuan Z (2008) Propagating waves of activity in the neocortex: what they are, what they do. Neuroscientist 14(5): 487–502

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo R. Laing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wasylenko, T.M., Cisternas, J.E., Laing, C.R. et al. Bifurcations of lurching waves in a thalamic neuronal network. Biol Cybern 103, 447–462 (2010). https://doi.org/10.1007/s00422-010-0409-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-010-0409-3

Keywords