Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Sensory uncertainty and stick balancing at the fingertip

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The effects of sensory input uncertainty, \(\varepsilon \), on the stability of time-delayed human motor control are investigated by calculating the minimum stick length, \(\ell _\mathrm{crit}\), that can be stabilized in the inverted position for a given time delay, \(\tau \). Five control strategies often discussed in the context of human motor control are examined: three time-invariant controllers [proportional–derivative, proportional–derivative–acceleration (PDA), model predictive (MP) controllers] and two time-varying controllers [act-and-wait (AAW) and intermittent predictive controllers]. The uncertainties of the sensory input are modeled as a multiplicative term in the system output. Estimates based on the variability of neural spike trains and neural population responses suggest that \(\varepsilon \approx 7\)–13 %. It is found that for this range of uncertainty, a tapped delay-line type of MP controller is the most robust controller. In particular, this controller can stabilize inverted sticks of the length balanced by expert stick balancers (0.25–0.5 m when \(\tau \approx 0.08\) s). However, a PDA controller becomes more effective when \(\varepsilon > 15\,\%\). A comparison between \(\ell _\mathrm{crit}\) for human stick balancing at the fingertip and balancing on the rubberized surface of a table tennis racket suggest that friction likely plays a role in balance control. Measurements of \(\ell _\mathrm{crit},\,\tau \), and a variability of the fluctuations in the vertical displacement angle, an estimate of \(\varepsilon \), may make it possible to study the changes in control strategy as motor skill develops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abed EH, Wang H, Tesi A (2000) Control of bifurcations and chaos. In: Levine WS (ed) The control handbook. CRC and IEEE Press, Boca Raton, FL, pp 951–966

    Google Scholar 

  • Arieli A, Sterkin A, Grinvald A, Aertsen A (1996) Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273:1868–1871

    Article  CAS  PubMed  Google Scholar 

  • Arstein Z (1982) Linear systems with delayed controls: a reduction. IEEE T Autom Control 27:869–879

    Article  Google Scholar 

  • Asai Y, Tasaka Y, Nomura K, Nomura T, Casidio M, Morasso P (2009) A model of postural control in quiet standing: robust compensation of delay-induced instability using intermittent activation of feedback control. PLoS ONE 4:e6169

    Article  PubMed Central  PubMed  Google Scholar 

  • Bays PM, Wolpert DM (2007) Computational principles of sensorimotor control that minimize uncertainty and variability. J Physiol 578(2):387–396

    Article  CAS  PubMed  Google Scholar 

  • Beilock S (2011) Choke: what the secrets of the brain reveal about getting it right when you have to. Free Press, Simon & Schuster, New York

    Google Scholar 

  • Bottaro A, Yasutake Y, Nomura T, Casadio M, Morasso P (2008) Bounded stability of the quiet standing posture: an intermittent control model. Hum Mov Sci 27:473–495

    Article  PubMed  Google Scholar 

  • Cabrera JL, Milton JG (2002) On-off intermittency in a human balancing task. Phys Rev Lett 89:158702

    Article  PubMed  Google Scholar 

  • Cabrera JL, Milton JG (2004) Human stick balancing: tuning Lévy flights to improve balance control. CHAOS 14(3):691–698

    Article  PubMed  Google Scholar 

  • Cabrera JL, Bormann R, Eurich C, Ohira T, Milton J (2004) State-dependent noise and human balance control. Fluct Noise Lett 4:L107–L117

    Article  Google Scholar 

  • Campbell SA, Crawfor S, Morris K (2008) Friction and the inverted pendulum stabilization problem. ASME J Dyn Syst Meas ContROL 130(054):501

    Google Scholar 

  • Cluff T, Balasubramaniam R (2010) Motor learning characterized by changing Lévy distributions. PLoS ONE 4:e5998

    Google Scholar 

  • Csernak G, Stepan G (2010) Digital control as source of chaotic behaviour. Int J Bifurcat Chaos 20:13651378

    Article  Google Scholar 

  • Engelborghs K, Dambrine M, Roose D (2001) Limitations of a class of stabilization methods for delay systems. IEEE Trans Autom Control 46:336–339

    Article  Google Scholar 

  • Enikov E, Stepan G (1998) Micro-chaotic motion of digitally controlled machines. J Vib Control 2:427–443

    Article  Google Scholar 

  • Fitts PM, Posner MI (1967) Human performance. Brooks/Cole, Belmont, CA

    Google Scholar 

  • Freudenberg JS, Looze DP (1988) Frequency domain properties of scalar and multivariable feedback systems. Springer, Berlin

    Book  Google Scholar 

  • Gawthrop P (2010) Act-and-wait and intermittent control: some comments. IEEE Trans Control Syst Technol 18:1195–1198

    Article  Google Scholar 

  • Gawthrop P, Loram I, Lakie M, Gollee H (2011) Intermittent control: a computational theory of human control. Biol Cybern 104:31–51

    Article  PubMed  Google Scholar 

  • Gawthrop PJ, Wang L (2007) Intermittent model predictive control. Proc Inst Mech Eng I J Syst Control Eng 221:1007–1018

    Google Scholar 

  • Gomi H, Kawato M (1993) Neural network control for a closed-loop system using feedback-error-learning. Neural Netw 6:933–946

    Article  Google Scholar 

  • Goodwin GC, Graebe SF, Salgado ME (2001) Control system design. Prentice Hall, New Jersey

    Google Scholar 

  • Hale JK, Lunel SMV (1993) Introduction to functional differential equations. Springer, New York

    Book  Google Scholar 

  • Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, d Simeral J, Vogel J, Haddadin S, Liu J, Cash SS, van der Smagt P, Donoghue JP (2012) Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485:372–377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Insperger T (2006) Act and wait concept for time-continuous control systems with feedback delay. IEEE Trans Control Syst Technol 14:974–977

    Article  Google Scholar 

  • Insperger T (2011) Stick balancing with reflex delay in case of parametric forcing. Commun Nonlinear Sci 16:2160–2168

    Article  Google Scholar 

  • Insperger T, Stepan G (2007) Act-and-wait control concept for discrete-time systems with feedback delay. IET Control Theory A 1(3):553–557

    Article  Google Scholar 

  • Insperger T, Stepan G (2011) Semi-discretization for time-delay systems. Springer, New York

    Book  Google Scholar 

  • Insperger T, Milton J, Stepan G (2013) Acceleration feedback improves balancing against reflex delay. J R Soc Interface 10(79):20120763

    Article  PubMed  Google Scholar 

  • Jordan MI (1996) Computational aspects of motor control and motor learning. In: Heuer H, Keele S (eds) Handbook of perception and action: motor skills. Academic Press, New York, pp 71–120

    Google Scholar 

  • Kawato M (1990) Feedback-error-learning neural network for supervised learning. In: Eckmiller R (ed) Advanced neural computers. Elsevier, Amsterdam, pp 365–372

    Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9(6):718–727

    Article  CAS  PubMed  Google Scholar 

  • Kleinman DL (1969) Optimal control of linear systems with time-delay and observation noise. IEEE Trans Automat Contr 14:524–527

    Article  Google Scholar 

  • Krill DC, Peuget A (2004) The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci 27: 712–719

    Google Scholar 

  • Krstic M (2009) Delay compensation for nonlinear, adaptive, and PDE systems. Birkhäuser, Boston

    Book  Google Scholar 

  • Kuiken TA, Miller LA, Lipschutz RD, Lock BA, Stubblefield K, Marasso PD, Zhou P, Dumanian G (2007) Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study. Lancet 369:371–380

    Article  PubMed  Google Scholar 

  • Landry M, Campbell SA, Morris K, Aguilar CO (2005) Dynamics of an inverted pendulum with delayed feedback control. SIAM J Appl Dyn Syst 4:333–351

    Article  Google Scholar 

  • Manitius AZ, Olbrot AW (1979) Finite spectrum assignment problem for systems with delays. IEEE Trans Autom Control AC–24:541–553

    Article  Google Scholar 

  • McDonnell MD, Ward LM (2011) The benefits of noise in neural systems: bridging theory and experiment. Nat Rev Neurosci 12:415–426

    Article  CAS  PubMed  Google Scholar 

  • Mehta B, Schaal S (2002) Forward models in visuomotor control. J Neurophysiol 88:942–953

    PubMed  Google Scholar 

  • Miall R, Weir DJ, Wolpert DM, Stein JF (1993) Is the cerebellum a Smith predictor? J Mot Behav 25(3):203–216

    Article  CAS  PubMed  Google Scholar 

  • Miall RC, Jackson JK (2006) Adaptation to visual feedback delays in manual tracking: evidence against the Smith predictor model of human visually guided action. Exp Brain Res 172:77–84

    Article  CAS  PubMed  Google Scholar 

  • Michiels W, Niculescu SI (2003) On the delay sensitivity of Smith predictors. Int J Syst Sci 34(8–9):543–551

    Article  Google Scholar 

  • Michiels W, Niculescu SI (2007) Stability and stabilization of time-delay systems: an eigenvalue-based approach. SIAM Publications, Philadelphia

    Book  Google Scholar 

  • Michiels W, Roose D (2003) An eigenvalue based approach to the robust stabilization of linear time-delay systems. Int J Control 76(7):678–686

    Article  Google Scholar 

  • Milton J, Solodkin A, Hlustik P, Small SL (2007) The mind of expert motor performance is cool and focused. NeuroImage 35:804–813

    Article  PubMed  Google Scholar 

  • Milton J, Cabrera JL, Ohira T, Tajima S, Tonosaki Y, Eurich CW, Campbell SA (2009a) The time-delayed inverted pendulum: implications for human balance control. Chaos 19(026):110

    Google Scholar 

  • Milton JG (2011) The delayed and noisy nervous system: implications for neural control. J Neural Eng 8(065):005

    Google Scholar 

  • Milton JG, Mackey MC (2000) Neural ensemble coding and statistical periodicity: speculations on the operation of the mind’s eye. J Physiol (Paris) 94:489–503

    Article  CAS  Google Scholar 

  • Milton JG, Cabrera JL, Ohira T (2008) Unstable dynamical systems: delays, noise and control. EPL 83: 48001

    Google Scholar 

  • Milton JG, Ohira T, Cabrera JL, Fraiser RM, Gyorffy JB, Ruizand FK, Strauss MA, Balch EC, Marin PJ, Alexander JL (2009b) Balancing with vibration: a prelude for “drift and act” balance control. PLoS ONE 4:e7427

    Article  PubMed Central  PubMed  Google Scholar 

  • Mondié S, Dambrine M, Santos O (2002) Approximation of control laws with distributed delays: a necessary condition for stability. Kybernetika 38:541–551

    Google Scholar 

  • Nijhawan R, Wu S (2009) Compensating time delays with neural predictions: are predictions sensory or motor? Philos Trans R Soc A 367:1063–1078

    Article  Google Scholar 

  • Otmakhov N, Shirke AM, Malinov R (1993) Measuring the impact of probabilistic transmission on neuronal output. Neuron 10:1101–1111

    Article  CAS  PubMed  Google Scholar 

  • Palmor ZJ (2000) Time-delay compensation—Smith predictor and its modifications. In: Levine WS (ed) The control handbook. CRC and IEEE Press, Boca Raton, FL, pp 224–237

    Google Scholar 

  • Patzelt F, Pawelzik KP (2011) Criticality of adaptive control dynamics. Phys Rev Lett 107(238):103

    Google Scholar 

  • Pau S, Jahn G, Sakreida K, Domin M, Lotze M (2013) Encoding and recall of finger sequences in experienced pianists compared to musically naives: a combined behavioral and functional imaging study. NeuroImage 64:379–387

    Article  CAS  PubMed  Google Scholar 

  • Schurer F (1948) Zur theorie des balancierens. Math Nachr 1:295–331

    Article  Google Scholar 

  • Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: implications for connectivity, computation and information coding. J Neurosci 18:3870–3896

    CAS  PubMed  Google Scholar 

  • Shadmehr R, Smith MA, Krakauer JW (2010) Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci 33:89–108

    Article  CAS  PubMed  Google Scholar 

  • Sieber J, Krauskopf B (2005) Extending the permissible control loop latency for the controlled inverted pendulum. Dyn Syst 20(2):189–199

    Article  Google Scholar 

  • Skogestad S, Postlewaite I (1996) Multivariable feedback control analysis and design. Wiley, London

    Google Scholar 

  • Smith OJM (1957) Closer control of loops with dead time. Chem Eng Prog 53(5):217–219

    Google Scholar 

  • Stanley J, Miall RC (2009) Using predictive motor control processes in a cognitive task: behavioral and neuroanatomical perspectives. Adv Exp Med Biol 629:337–354

    Article  PubMed  Google Scholar 

  • Stein G (2003) Respect the unstable. IEEE Control Syst Mag 23:12–25

    Article  Google Scholar 

  • Stepan G (1989) Retarded dynamical systems. Longman, Harlow

    Google Scholar 

  • Stepan G (2009) Delay effects in the human sensory system during balancing. Philos Trans R Soc A 367:1195–1212

    Article  Google Scholar 

  • Suminski AJ, Thach DC, Fagg AH, Hatsopoulos NG (2010) Incorporating feedback from multiple sensory modalities enhances brain–machine interface control. J Neurosci 30:16,777–16,787

    Article  CAS  Google Scholar 

  • Suzuki Y, Nomura T, Casadio M, Morasso P (2012) Intermittent control with ankle, hip, and mixed strategies during quiet standing: a theoretical proposal based on a double inverted pendulum model. J Theor Biol 310:55–79

    Google Scholar 

  • Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5:1226–1235

    Article  CAS  PubMed  Google Scholar 

  • Valero-Cuevas FJ, Hoffmann H, Kurse MU, Kutch JJ, Theodorou EA (2009) Computational models for neuromuscular function. IEEE Rev Biomed Eng 2:110–135

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang QG, Lee TH, Tan KK (1998) Finite spectrum assignment for time-delay systems. Springer, New York

    Google Scholar 

  • Werner G, Mountcastle VB (1963) The variability of cortical neural activity in a sensory system, and its implications for the central reflection of sensory inputs. J Neurophysiol 26:958–977

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from the Hungarian National Science Foundation under grant OTKAK105433 (TI), the Hungarian-American Enterprise Scholarship Fund (HAESF) (TI), the William R Kenan, Jr Charitable Trust (JM), the National Science Foundation (JM, NSF-1028970) and the Invitation Award to Distinguished Scientists by the Hungarian Academy of Sciences (JM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamas Insperger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Insperger, T., Milton, J. Sensory uncertainty and stick balancing at the fingertip. Biol Cybern 108, 85–101 (2014). https://doi.org/10.1007/s00422-013-0582-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-013-0582-2

Keywords