Abstract
Main conclusion
The oxidosqualene cyclases (OSCs) generating triterpenoid skeletons in Cyclocarya paliurus were identified for the first time, and two uridine diphosphate (UDP)-glycosyltransferases (UGTs) catalyzing the glycosylation of flavonoids were characterized.
Abstract
Cyclocarya paliurus, a native rare dicotyledonous plant in China, contains an abundance of triterpenoid saponins and flavonoid glycosides that exhibit valuable pharmaceutical effects in preventing hypertension, hyperlipidemia, and diabetes. However, the molecular mechanism explaining the biosynthesis of triterpenoid saponin and flavonoid glycoside in C. paliurus remains unclear. In this study, the triterpene content in different tissues and the expression pattern of genes encoding the key enzymes associated with triterpenoid saponin and flavonoid glycoside biosynthesis were studied using transcriptome and metabolome analysis. The eight upstream oxidosqualene cyclases (OSCs) involved in triterpenoid saponin biosynthesis were functionally characterized, among them CpalOSC6 catalyzed 2,3;22,23-dioxidosqualene to form 3-epicabraleadiol; CpalOSC8 cyclized 2,3-oxidosqualene to generate dammarenediol-II; CpalOSC2 and CpalOSC3 produced β-amyrin and CpalOSC4 produced cycloartenol, while CpalOSC2–CpalOSC5, CpalOSC7, and CpalOSC8 all produced lanosterol. However, no catalytic product was detected for CpalOSC1. Moreover, two downstream flavonoid uridine diphosphate (UDP)-glycosyltransferases (UGTs) (CpalUGT015 and CpalUGT100) that catalyze the last step of flavonoid glycoside biosynthesis were functionally elucidated. These results uncovered the key genes involved in the biosynthesis of triterpenoid saponins and flavonoid glycosides in C. paliurus that could be applied to produce flavonoid glycosides and key triterpenoid saponins in the future via a synthetic strategy.
Similar content being viewed by others
Availability of data and materials
The plant specimens of the materials used in the experiment are stored in the Southwest Biodiversity Laboratory (No: XINAN202004201). All data supporting the findings were contained in the manuscript and its supplementary files except the RNA-seq raw data. And all original transcriptome data were submitted to NCBI and available for download after six months (Accession Number: PRJNA894718, https://dataview.ncbi.nlm.nih.gov/object/PRJNA894718?reviewer=hjonor6i3ve0j7ffabpos98ba9).
Abbreviations
- OSC:
-
Oxidosqualene cyclase
- UGT:
-
Uridine diphosphate-dependent glycosyltransferases
References
Aramaki T, Blanc-Mathieu R, Endo H et al (2019) KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36(7):2251–2252. https://doi.org/10.1093/bioinformatics/btz859/5631907
Blum M, Chang HY, Chuguransky S et al (2021) The InterPro protein families and domains database: 20 years on. Nucleic Acids Res 49(D1):D344–D354. https://doi.org/10.1093/nar/gkaa977
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170
Bowles D, Isayenkova J, Lim EK, Poppenberger B (2005) Glycosyltransferases: managers of small molecules. Curr Opin Plant Biol 8:254–263. https://doi.org/10.1016/j.pbi.2005.03.007
Bowles D, Lim EK, Poppenberger B, Vaistij FE (2006) Glycosyltransferases of lipophilic small molecules. Annu Rev Plant Biol 57(1):567–597. https://doi.org/10.1146/annurev.arplant.57.032905.105429
Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. Bioinformatics 10:421. https://doi.org/10.1186/1471-2105-10-421
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973. https://doi.org/10.1093/bioinformatics/btp348
Chen Y, Na L, Fan J et al (2018) Seco-dammarane triterpenoids from the leaves of Cyclocarya paliurus. Phytochemistry 145:85–92. https://doi.org/10.1016/j.phytochem.2017.10.013
Chen C, Chen H, Zhang Y et al (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202. https://doi.org/10.1016/j.molp.2020.06.009
Chen Z, Jian Y, Wu Q et al (2022) Cyclocarya paliurus (Batalin) Iljinskaja: botany, ethnopharmacology, phytochemistry and pharmacology. J Ethnopharmacology 285:114912. https://doi.org/10.1016/j.jep.2021.114912
Deng ZL, Münch PC, Mreches R, McHardy AC (2022) Rapid and accurate identification of ribosomal RNA sequences via deep learning. Nucleic Acids Res 50(10):E60. https://doi.org/10.1093/nar/gkac112
Dinday S, Ghosha S (2023) Recent advances in triterpenoid pathway elucidation and engineering. Biotechnol Adv 68:108214. https://doi.org/10.1016/j.biotechadv.2023.108214
Fang Z (2022) A review on the development history and the resource silviculture of Cyclocarya paliurus industry. J Nanjing Univ 46(6):115–126. https://doi.org/10.12302/j.issn.1000-2006.202206019
Fang ZJ, Shen SN, Wang JM et al (2019) Triterpenoids from Cyclocarya paliurus that enhance glucose uptake in 3T3-L1 adipocytes. Molecules 24(1):187. https://doi.org/10.3390/molecules24010187
Forestier E, Romero-Segura C, Pateraki I et al (2019) Distinct triterpene synthases in the laticifers of Euphorbia lathyris. Sci Rep 9:4840. https://doi.org/10.1038/s41598-019-40905-y
Gachon CMM, Langlois-Meurinne M, Saindrenan P (2005) Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends Plant Sci 10:542–549. https://doi.org/10.1016/j.tplants.2005.09.007
Grabherr MG, Haas BJ, Yassour M et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652. https://doi.org/10.1038/nbt.1883
Hoshino T (2017) β-Amyrin biosynthesis: catalytic mechanism and substrate recognition. Org Biomol Chem 15(14):2869–2891. https://doi.org/10.1039/c7ob00238f
Hu W, Liu N, Tian Y, Zhang L (2013) Molecular cloning, expression, purification, and functional characterization of dammarenediol synthase from panax ginseng. Biomed Res Int 2013:7. https://doi.org/10.1155/2013/285740
Ito R, Masukawa Y, Nakada C et al (2014) β-Amyrin synthase from Euphorbia tirucalli. Steric bulk, not the π-electrons of Phe, at position 474 has a key role in affording the correct folding of the substrate to complete the normal polycyclization cascade. Org Biomol Chem 12:3836–3846. https://doi.org/10.1039/c4ob00064a
Jiang C, Wang Q, Wei YJ et al (2015) Cholesterol-lowering effects and potential mechanisms of different polar extracts from Cyclocarya paliurus leave in hyperlipidemic mice. J Ethnopharmacol 176:17–26. https://doi.org/10.1016/j.jep.2015.10.006
Kubo A, Arai Y, Nagashima S, Yoshikawa T (2004) Alteration of sugar donor specificities of plant glycosyltransferases by a single point mutation. Arch Biochem Biophys 429:198–203. https://doi.org/10.1016/j.abb.2004.06.021
Kurihara H, Asami S, Shibata H et al (2003) Hypolipemic effect of Cyclocarya paliurus (Batal) Iljinskaja in lipid-loaded mice. Biol Pharm Bull 26(3):383–385. https://doi.org/10.1248/bpb.26.383
Kushiro T, Shibuya M, Ebizuka Y (1998) β-Amyrin synthase cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants. Eur J Biochem 256:238–244. https://doi.org/10.1046/j.1432-1327.1998.2560238.x
Li Q, Hu J, Xie J, Nie S, Xie M-Y (2017) Isolation, structure, and bioactivities of polysaccharides from Cyclocarya paliurus (Batal.) iljinskaja. Ann N Y Acad Sci 1398(1):20–29. https://doi.org/10.1111/nyas.13357
Li J, Liu X, Gao Y et al (2019) Identification of a UDP-glucosyltransferase favouring substrate- and regio-specific biosynthesis of flavonoid glucosides in Cyclocarya paliurus. Phytochemistry 163:75–88. https://doi.org/10.1016/j.phytochem.2019.04.004
Lin X, Kaul S, Rounsley S et al (1999) Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402(6763):761–768. https://doi.org/10.1038/45471
Liu W, Deng S, Zhou D et al (2020) 3,4-seco-Dammarane triterpenoid saponins with anti-inflammatory activity isolated from the leaves of Cyclocarya paliurus. J Agric Food Chem 68:2041–2053. https://doi.org/10.1021/acs.jafc.9b06898
Lodeiro S, Segura MJR, Stahl M et al (2004) Oxidosqualene cylase second-sphere residues profoundly influence the product profile. Chem Biol Chem 5:1581–1585. https://doi.org/10.1002/cbic.200400086
Lu Y, Luo YF, Zhou JW et al (2021) Probing the functions of friedelane type triterpene cyclases from four celastrol-producing plants. Plant J 109:555–567. https://doi.org/10.1111/tpj.15575
Nguyen T (2022) Plant triterpenoid scaffolding: a tale of two cyclases. Plant Physiol 188:1408–1409. https://doi.org/10.1093/plphys/kiab598
Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ (2015) IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274. https://doi.org/10.1093/molbev/msu300
Patro R, Duggal G, Love MI et al (2017) Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods 14:417–419. https://doi.org/10.1038/nmeth.4197
Phillips DR, Rasbery JM, Bartel B, Matsuda SP (2006) Biosynthetic diversity in plant triterpene cyclization. Curr Opin Plant Biol 9:305–314. https://doi.org/10.1016/j.pbi.2006.03.004
Pruitt KD, Tatusova T, Maglott DR (2005) NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 33(Suppl. 1):D501–D504. https://doi.org/10.1093/nar/gki025
Qi LW, Wang CZ, Yuan CS (2011) Ginsenosides from American ginseng: chemical and pharmacological diversity. Phytochemistry 72:689–699. https://doi.org/10.1016/j.phytochem.2011.02.012
Rahimi S, Kim J, Mijakovic I et al (2019) Triterpenoid-biosynthetic UDP-glycosyltransferases from plants. Biotechnol Adv 37(7):107394. https://doi.org/10.1016/j.biotechadv.2019.04.016
Saito K, Yonekura-Sakakibara K, Nakabayashi R et al (2013) The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. Plant Physiol Biochem 72:21–34. https://doi.org/10.1016/j.plaphy.2013.02.001
Sawai S, Uchiyama H, Mizuno S et al (2011) Molecular characterization of an oxidosqualene cyclase that yields shionone, a unique tetracyclic triterpene ketone of Aster tataricus. FEBS Lett 585:1031–1036. https://doi.org/10.1016/j.febslet.2011.02.037
Shan H, Segura MJ, Wilson WK et al (2005) Enzymatic cyclization of dioxidosqualene to heterocyclic triterpenes. J Am Chem Soc 127(51):18008–18009. https://doi.org/10.1021/ja055822g
Shao H, He X, Achnine L et al (2005) Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula. Plant Cell 17:3141–3154. https://doi.org/10.1105/tpc.105.035055
Subramanian B, Gao S, Lercher MJ et al (2019) Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res 47(W1):W270–W275. https://doi.org/10.1093/nar/gkz357
Suzuki M, Xiang T, Ohyama K et al (2006) Lanosterol synthase in dicotyledonous plants. Plant Cell Physiol 47:565–571. https://doi.org/10.1093/pcp/pcj031
Tang M, Zou Y, Watanabe K et al (2016) Oxidative cyclization in natural product biosynthesis. Chem Rev 117(8):5226–5333. https://doi.org/10.1021/acs.chemrev.6b00478
Theologis A, Ecker JR, Palmk CJ et al (2000) Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature 408:816–820. https://doi.org/10.1038/35048500
Thimmappa R, Geisler K, Louveau T et al (2014) Triterpene biosynthesis in plants. Annu Rev Plant Biol 65:225–257. https://doi.org/10.1146/annurev-arplant-050312-120229
Villanueva RAM, Chen ZJ (2019) ggplot2: elegant graphics for data analysis (2nd edn.). Meas Interdiscip Res 17:160–167. https://doi.org/10.1080/15366367.2019.1565254
Wang X (2009) Structure, mechanism and engineering of plant natural product glycosyltransferases. FEBS Lett 583:3303–3309. https://doi.org/10.1016/j.febslet.2009.09.042
Wang Z, Yeats T, Han H, Jetter R (2010) Cloning and characterization of oxidosqualene cyclases from Kalanchoe daigremontiana: enzymes catalyzing up to 10 rearrangement steps yielding friedelin and other triterpenoids. J Biol Chem 285:29703–29712. https://doi.org/10.1074/jbc.M109.098871
Wang H, Wang C, Fan W et al (2018) UDP-glucose: anthocyanidin 3-O-glucoside-2”-O-glucosyltransferase catalyzes glycosyl extension of anthocyanins in purple Ipomoea batatas. J Exp Bot 69(22):5444–5459. https://doi.org/10.1093/jxb/ery305
Wang J, Guo Y, Yin X et al (2022) Diverse triterpene skeletons are derived from the expansion and divergent evolution of 2,3-oxidosqualene cyclases in plants. Crit Rev Biochem Mol Biol 57:113–132. https://doi.org/10.1080/10409238.2021.1979458
Wu Y, Li Y, Wu X et al (2014) Chemical constituents from Cyclocarya paliurus (Batal.) Iljinsk. Biochem Syst Ecol 57:216–220. https://doi.org/10.1016/j.bse.2014.08.022
Xiao H, Wen B, Ning Z et al (2020) Author correction: Cyclocarya paliurus tea leaves enhances pancreatic β cell preservation through inhibition of apoptosis. Sci Rep 10:19446. https://doi.org/10.1038/s41598-017-09641-z
Xie J, Dong C, Nie S et al (2015) Extraction, chemical composition and antioxidant activity of flavonoids from Cyclocarya paliurus (Batal.) Iljinskaja leaves. Food Chem 186:97–105. https://doi.org/10.1016/j.foodchem.2014.06.106
Xiong L, Ouyang KH, Jiang Y et al (2018) Chemical composition of Cyclocarya paliurus polysaccharide and inflammatory effects in lipopolysaccharide-stimulated RAW264.7 macrophage. Int J Biol Macromol 107:1898–1907. https://doi.org/10.1016/j.ijbiomac.2017.10.055
Xu R, Fazio GC, Matsuda SPT (2004) On the origins of triterpenoid skeletal diversity. Phytochemistry 65:261–291. https://doi.org/10.1002/chin.200422256
Xuan TY, Tan J, Sun HH et al (2021) Cyclocarioside O-Q, three novel seco-dammarane triterpenoid glycosides from the leaves of Cyclocarya paliurus. Nat Prod Res 35:167–173. https://doi.org/10.1080/14786419.2019.1616722
Ye S, Feng L, Zhang S et al (2022) Integrated metabolomic and transcriptomic analysis and identification of dammarenediol II synthase involved in saponin biosynthesis in Gynostemma longipes. Front Plant Sci 13:852377. https://doi.org/10.3389/fpls.2022.852377
Zhao Y, Liu G, Yang F et al (2023) Multilayered regulation of secondary metabolism in medicinal plants. Mol Hortic 3:11. https://doi.org/10.1186/s43897-023-00059-y
Zhou JW, Hu TY, Gao LH et al (2019) Friedelane-type triterpene cyclase in celastrol biosynthesis from Tripterygium wilfordii and its application for triterpenes biosynthesis in yeast. New Phytol 223:722–735. https://doi.org/10.1111/nph.15809
Zhou M, Quek SY, Shang X, Fang S (2021) Geographical variations of triterpenoid contents in Cyclocarya paliurus leaves and their inhibitory effects on HeLa cells. Ind Crops Prod 162:113314. https://doi.org/10.1016/j.indcrop.2021.113314
Acknowledgements
This work was supported by Major Science and Technology Projects in Yunnan Province (2019ZF011-1), the independent research fund of Yunnan Characteristic Plant Extraction Laboratory (2022YKZY001), Natural Science Foundation of Yunnan Province (Grant No. 202201AU070236) and the Project of Young and Middle-aged Talent of Yunnan Province (Grant No. 2019HB019). We thank the Dr. Yunheng Ji (Kunming Institute of Botany) for identifying plant materials. We thank the Dr. Huifeng Jiang (Tianjin Institute of Industrial Biotechnology) for the gift of S. cerevisiae GIL77.
Author information
Authors and Affiliations
Contributions
SYZ: Conceptualization, Methodology, Validation, Writing—original draft, Visualization. YQP: Conceptualization, Methodology, Validation, Visualization. GSX: Data Curation, Software, Visualization. WLS: Project administration. LF: Methodology. XYJ: Validation. XJL: Resources. SMH: Resources. SCY: Resources. YZ: Writing—review and editing. GHZ: Conceptualization, Supervision, Writing—review and editing. All authors read and approved the final manuscript.
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Communicated by Dorothea Bartels.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhang, Sy., Peng, Yq., Xiang, Gs. et al. Functional characterization of genes related to triterpene and flavonoid biosynthesis in Cyclocarya paliurus. Planta 259, 50 (2024). https://doi.org/10.1007/s00425-023-04282-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00425-023-04282-1