Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Long non-coding RNA NEAT1 promotes lipopolysaccharide-induced injury in human tubule epithelial cells by regulating miR-93-5p/TXNIP axis

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Many long non-coding RNAs (lncRNAs) have been found to play crucial roles in sepsis-induced acute kidney injury (AKI), including lncRNA nuclear-enriched abundant transcript 1 (NEAT1). We aimed to further elucidate the functions and molecular mechanism of NEAT1 in sepsis-induced AKI. Sepsis-induced AKI cell model was established by treatment with lipopolysaccharide (LPS) in human tubule epithelial (HK2) cells. Cell viability and apoptosis were determined by Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. Western blot assay was performed to measure all protein levels. The concentrations of inflammatory factors were evaluated using enzyme-linked immunosorbent assay (ELISA). The expression levels of inflammatory factors, NEAT1, microRNA-93-5p (miR-93-5p), and thioredoxin-interacting protein (TXNIP) were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The oxidative stress factors were detected using corresponding kits. The interaction between miR-93-5p and NEAT1 or TXNIP was predicted by bioinformatics analysis and verified by dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. NEAT1 was upregulated in serum of sepsis patients and LPS-induced HK2 cells. NEAT1 silence alleviated LPS-induced HK2 cell injury by inhibiting apoptosis, inflammation and oxidative stress. Moreover, miR-93-5p was a direct target of NEAT1, and suppression of NEAT1 weakened LPS-induced injury by upregulating miR-93-5p in HK2 cells. Furthermore, TXNIP was a downstream target of miR-93-5p, and miR-93-5p attenuated LPS-induced HK2 cell injury by downregulating TXNIP. In addition, NEAT1 regulated TXNIP expression by acting as a sponge of miR-93-5p. NEAT1 might aggravate LPS-induced injury in HK2 cells by regulating miR-93-5p/TXNIP axis, providing a potential therapeutic strategy for sepsis-associated AKI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Deutschman CS, Tracey KJ (2014) Sepsis: current dogma and new perspectives. Immunity 40:463–475. https://doi.org/10.1016/j.immuni.2014.04.001

    Article  CAS  PubMed  Google Scholar 

  2. Kampmeier TG, Rehberg S, Westphal M, Lange M (2010) Vasopressin in sepsis and septic shock. Minerva Anestesiol 76:844–850

    CAS  PubMed  Google Scholar 

  3. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29:1303

    Article  CAS  PubMed  Google Scholar 

  4. Keir I, Kellum JA (2015) Acute kidney injury in severe sepsis: pathophysiology, diagnosis, and treatment recommendations. J Vet Emerg Crit Care (San Antonio, Tex: 2001) 25:200–209. https://doi.org/10.1111/vec.12297

    Article  Google Scholar 

  5. Zhao H, Liu Z, Shen H, Jin S, Zhang S (2016) Glycyrrhizic acid pretreatment prevents sepsis-induced acute kidney injury via suppressing inflammation, apoptosis and oxidative stress. Eur J Pharmacol 781:92–99. https://doi.org/10.1016/j.ejphar.2016.04.006

    Article  CAS  PubMed  Google Scholar 

  6. Rousta AM, Mirahmadi SM, Shahmohammadi A, Nourabadi D, Khajevand-Khazaei MR, Baluchnejadmojarad T et al (2018) Protective effect of sesamin in lipopolysaccharide-induced mouse model of acute kidney injury via attenuation of oxidative stress, inflammation, and apoptosis. Immunopharmacol Immunotoxicol 40:423–429. https://doi.org/10.1080/08923973.2018.1523926

    Article  CAS  PubMed  Google Scholar 

  7. Li J, Xuan Z, Liu C (2013) Long non-coding RNAs and complex human diseases. Int J Mol Sci 14:18790–18808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gibb EA, Brown CJ, Lam WL (2011) The functional role of long non-coding RNA in human carcinomas. Mol Cancer 10:38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang X, Sun S, Pu JKS, Tsang ACO, Lee D, Man VOY et al (2012) Long non-coding RNA expression profiles predict clinical phenotypes in glioma. Neurobiol Dis 48:1–8

    Article  PubMed  Google Scholar 

  10. Zhou Z, Zhu Y, Gao G, Zhang Y (2019) Long noncoding RNA SNHG16 targets miR-146a-5p/CCL5 to regulate LPS-induced WI-38 cell apoptosis and inflammation in acute pneumonia. Life Sci 228:189–197. https://doi.org/10.1016/j.lfs.2019.05.008

    Article  CAS  PubMed  Google Scholar 

  11. Ghafouri-Fard S, Shoorei H, Taheri M (2020) Non-coding RNAs are involved in the response to oxidative stress. Biomed Pharmacother 127:110228. https://doi.org/10.1016/j.biopha.2020.110228

    Article  CAS  PubMed  Google Scholar 

  12. Wu S, Qiu H, Wang Q, Cao Z, Wang J (2020) Effects and mechanism of lncRNA CRNDE on sepsis-induced acute kidney injury. Anal Cell Pathol (Amst) 2020:8576234. https://doi.org/10.1155/2020/8576234

    Article  CAS  Google Scholar 

  13. Wang J, Song J, Li Y, Shao J, Xie Z, Sun K (2020) Down-regulation of LncRNA CRNDE aggravates kidney injury via increasing MiR-181a-5p in sepsis. Int Immunopharmacol 79:105933. https://doi.org/10.1016/j.intimp.2019.105933

    Article  CAS  PubMed  Google Scholar 

  14. Liu X, Hong C, Wu S, Song S, Yang Z, Cao L et al (2019) Downregulation of lncRNA TUG1 contributes to the development of sepsis-associated acute kidney injury via regulating miR-142-3p/sirtuin 1 axis and modulating NF-κB pathway. J Cell Biochem. https://doi.org/10.1002/jcb.28409

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ghafouri-Fard S, Taheri M (2019) Nuclear enriched abundant transcript 1 (NEAT1): A long non-coding RNA with diverse functions in tumorigenesis. Biomed Pharmacother 111:51–59. https://doi.org/10.1016/j.biopha.2018.12.070

    Article  CAS  PubMed  Google Scholar 

  16. Chen Y, Qiu J, Chen B, Lin Y, Chen Y, Xie G et al (2018) Long non-coding RNA NEAT1 plays an important role in sepsis-induced acute kidney injury by targeting miR-204 and modulating the NF-κB pathway. Int Immunopharmacol 59:252–260. https://doi.org/10.1016/j.intimp.2018.03.023

    Article  CAS  PubMed  Google Scholar 

  17. Liz J, Esteller M (2016) lncRNAs and microRNAs with a role in cancer development. Biochem Biophys Acta 1859:169–176. https://doi.org/10.1016/j.bbagrm.2015.06.015

    Article  CAS  PubMed  Google Scholar 

  18. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146:353–358. https://doi.org/10.1016/j.cell.2011.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jones TF, Bekele S, O’Dwyer MJ, Prowle JR (2018) MicroRNAs in acute kidney injury. Nephron 140:124–128. https://doi.org/10.1159/000490204

    Article  CAS  PubMed  Google Scholar 

  20. Tüfekci KU, Oner MG, Meuwissen RL, Genç S (2014) The role of microRNAs in human diseases. Methods Mol Biol 1107:33–50. https://doi.org/10.1007/978-1-62703-748-8_3

    Article  CAS  PubMed  Google Scholar 

  21. He Z, Wang H, Yue L (2020) Endothelial progenitor cells-secreted extracellular vesicles containing microRNA-93-5p confer protection against sepsis-induced acute kidney injury via the KDM6B/H3K27me3/TNF-α axis. Exp Cell Res 395:112173. https://doi.org/10.1016/j.yexcr.2020.112173

    Article  CAS  PubMed  Google Scholar 

  22. Li X, Yao L, Zeng X, Hu B, Zhang X, Wang J et al (2020) miR-30c-5p alleviated pyroptosis during sepsis-induced acute kidney injury via targeting TXNIP. Inflammation. https://doi.org/10.1007/s10753-020-01323-9

    Article  PubMed  Google Scholar 

  23. Gong Y, Ding F, Zhang F, Gu Y (2019) Investigate predictive capacity of in-hospital mortality of four severity score systems on critically ill patients with acute kidney injury. J Investig Med 67:1103–1109. https://doi.org/10.1136/jim-2019-001003

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tsai MS, Wang YH, Lai YY, Tsou HK, Liou GG, Ko JL et al (2018) Kaempferol protects against propacetamol-induced acute liver injury through CYP2E1 inactivation, UGT1A1 activation, and attenuation of oxidative stress, inflammation and apoptosis in mice. Toxicol Lett 290:97–109. https://doi.org/10.1016/j.toxlet.2018.03.024

    Article  CAS  PubMed  Google Scholar 

  25. Chen Y, Jin S, Teng X, Hu Z, Zhang Z, Qiu X et al (2018) Hydrogen sulfide attenuates LPS-induced acute kidney injury by inhibiting inflammation and oxidative stress. Oxid Med Cell Longev 2018:6717212. https://doi.org/10.1155/2018/6717212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stasi A, Intini A, Divella C, Franzin R, Montemurno E, Grandaliano G et al (2017) Emerging role of Lipopolysaccharide binding protein in sepsis-induced acute kidney injury. Nephrol Dial Transplant 32:24–31. https://doi.org/10.1093/ndt/gfw250

    Article  CAS  PubMed  Google Scholar 

  27. Jiang ZJ, Zhang MY, Fan ZW, Sun WL, Tang Y (2019) Influence of lncRNA HOTAIR on acute kidney injury in sepsis rats through regulating miR-34a/Bcl-2 pathway. Eur Rev Med Pharmacol Sci 23:3512–3519. https://doi.org/10.26355/eurrev_201904_17717

    Article  PubMed  Google Scholar 

  28. Tan J, Fan J, He J, Zhao L, Tang H (2020) Knockdown of LncRNA DLX6-AS1 inhibits HK-2 cell pyroptosis via regulating miR-223-3p/NLRP3 pathway in lipopolysaccharide-induced acute kidney injury. J Bioenerg Biomembr 52:367–376. https://doi.org/10.1007/s10863-020-09845-5

    Article  CAS  PubMed  Google Scholar 

  29. Li Y, Ding X, Xiu S, Du G, Liu Y (2019) LncRNA NEAT1 promotes proliferation, migration and invasion via regulating miR-296-5p/CNN2 axis in hepatocellular carcinoma cells. Onco Targets Ther 12:9887–9897. https://doi.org/10.2147/ott.s228917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Simchovitz A, Hanan M, Niederhoffer N, Madrer N, Yayon N, Bennett ER et al (2019) NEAT1 is overexpressed in Parkinson’s disease substantia nigra and confers drug-inducible neuroprotection from oxidative stress. FASEB J 33:11223–11234. https://doi.org/10.1096/fj.201900830R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen X, Tan XR, Li SJ, Zhang XX (2019) LncRNA NEAT1 promotes hepatic lipid accumulation via regulating miR-146a-5p/ROCK1 in nonalcoholic fatty liver disease. Life Sci 235:116829. https://doi.org/10.1016/j.lfs.2019.116829

    Article  CAS  PubMed  Google Scholar 

  32. Zhang CC, Niu F (2019) LncRNA NEAT1 promotes inflammatory response in sepsis-induced liver injury via the Let-7a/TLR4 axis. Int Immunopharmacol 75:105731. https://doi.org/10.1016/j.intimp.2019.105731

    Article  CAS  PubMed  Google Scholar 

  33. Liu L, Liu F, Sun Z, Peng Z, You T, Yu Z (2020) LncRNA NEAT1 promotes apoptosis and inflammation in LPS-induced sepsis models by targeting miR-590-3p. Exp Ther Med 20:3290–3300. https://doi.org/10.3892/etm.2020.9079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sanchez-Mejias A, Tay Y (2015) Competing endogenous RNA networks: tying the essential knots for cancer biology and therapeutics. J Hematol Oncol 8:30. https://doi.org/10.1186/s13045-015-0129-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Du Z, Sun T, Hacisuleyman E, Fei T, Wang X, Brown M et al (2016) Integrative analyses reveal a long noncoding RNA-mediated sponge regulatory network in prostate cancer. Nat Commun 7:10982. https://doi.org/10.1038/ncomms10982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shen Y, Yu J, Jing Y, Zhang J (2019) MiR-106a aggravates sepsis-induced acute kidney injury by targeting THBS2 in mice model. Acta Cirurgica Brasileira 34:e201900602. https://doi.org/10.1590/s0102-865020190060000002

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lin Z, Liu Z, Wang X, Qiu C, Zheng S (2019) MiR-21-3p plays a crucial role in metabolism alteration of renal tubular epithelial cells during sepsis associated acute kidney injury via AKT/CDK2-FOXO1 pathway. Biomed Res Int 2019:2821731. https://doi.org/10.1155/2019/2821731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zheng G, Qu H, Li F, Ma W, Yang H (2018) Propofol attenuates sepsis-induced acute kidney injury by regulating miR-290-5p/CCL-2 signaling pathway. Braz J Med Biol Res 51:e7655. https://doi.org/10.1590/1414-431x20187655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gao H, Xiao D, Gao L, Li X (2020) MicroRNA-93 contributes to the suppression of lung inflammatory responses in LPS-induced acute lung injury in mice via the TLR4/MyD88/NF-κB signaling pathway. Int J Mol Med 46:561–570. https://doi.org/10.3892/ijmm.2020.4610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xu Y, Jin H, Yang X, Wang L, Su L, Liu K et al (2014) MicroRNA-93 inhibits inflammatory cytokine production in LPS-stimulated murine macrophages by targeting IRAK4. FEBS Lett 588:1692–1698. https://doi.org/10.1016/j.febslet.2014.03.013

    Article  CAS  PubMed  Google Scholar 

  41. Felekkis K, Touvana E, Stefanou C, Deltas C (2010) microRNAs: a newly described class of encoded molecules that play a role in health and disease. Hippokratia 14:236

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Schroder K, Zhou R, Tschopp J (2010) The NLRP3 inflammasome: a sensor for metabolic danger? Science 327:296–300. https://doi.org/10.1126/science.1184003

    Article  CAS  PubMed  Google Scholar 

  43. Deng H, Chen F, Wang Y, Jiang H, Dong Z, Yuan B et al (2020) The role of activated NLRP3 inflammatory body in acute kidney injury in rats caused by sepsis and NLRP3-TXNIP signaling pathway. Saudi J Biol Sci 27:1251–1259. https://doi.org/10.1016/j.sjbs.2020.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

There is no funding to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liying Fang.

Ethics declarations

Conflict of interest

The authors declare that they have no financial conflict of interest.

Ethical approval

The research related to human use has been complied with all the relevant national regulations, and has been approved by the ethics committee of The Fourth People's Hospital of Shaanxi Province.

Additional information

Edited by: Christian Bogdan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Wu, L., Liu, S. et al. Long non-coding RNA NEAT1 promotes lipopolysaccharide-induced injury in human tubule epithelial cells by regulating miR-93-5p/TXNIP axis. Med Microbiol Immunol 210, 121–132 (2021). https://doi.org/10.1007/s00430-021-00705-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-021-00705-6

Keywords