Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) and their associated protein (Cas) system is a gene editing technology guided by RNA endonuclease. The CRISPR-Cas12a (also known as CRISPR-Cpf1) system is extensively utilized in genome editing research due to its accuracy and high efficiency. In this paper, we primarily focus on the application of CRISPR-Cpf1 technology in the construction of disease models and gene therapy. Firstly, the structure and mechanism of the CRISPR-Cas system are introduced. Secondly, the similarities and differences between CRISPR-Cpf1 and CRISPR-Cas9 technologies are compared. Thirdly, the main focus is on the application of the CRISPR-Cpf1 system in cell and animal genome editing. Finally, the challenges faced by CRISPR-Cpf1 technology and corresponding strategies are analyzed. Although CRISPR-Cpf1 technology has certain off-target effects, it can effectively and accurately edit cell and animal genomes, and has significant advantages in the preclinical research.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
No data was used for the research described in the article.
References
Aartsma-Rus A, Fokkema I, Verschuuren J, Ginjaar I, van Deutekom J, van Ommen GJ, den Dunnen JT (2009) Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat 30(3):293–299
Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, Verdine V, Cox DBT, Kellner MJ, Regev A, Lander ES, Voytas DF, Ting AY, Zhang F (2017) RNA targeting with CRISPR-Cas13. Nature 550(7675):280–284
Alcón P, Montoya G, Stella S (2017) Assembly of Francisella novicida Cpf1 endonuclease in complex with guide RNA and target DNA. Acta Crystallogr F Struct Biol Commun 73(Pt 7):409–415
Angelini C, Peterle E (2012) Old and new therapeutic developments in steroid treatment in Duchenne muscular dystrophy. Acta Myol 31(1):9–15
Aravalli RN, Steer CJ (2018) CRISPR/Cas9 therapeutics for liver diseases. J Cell Biochem 119(6):4265–4278
Barre-Sinoussi F, Ross AL, Delfraissy JF (2013) Past, present and future: 30 years of HIV research. Nat Rev Microbiol 11(12):877–883
Bear MF, Huber KM, Warren ST (2004) The mGluR theory of fragile X mental retardation. Trends Neurosci 27(7):370–377
Begemann MB, Gray BN, January E, Gordon GC, He Y, Liu H, Wu X, Brutnell TP, Mockler TC, Oufattole M (2017) Precise insertion and guided editing of higher plant genomes using Cpf1 CRISPR nucleases. Sci Rep 7(1):11606
Berglund LJ (2023) Modulating the PI3K signalling pathway in activated PI3K Delta Syndrome: a clinical perspective. J Clin Immunol 44(1):34
Bhatt H, Brunet LJ, Stewart CL (1991) Uterine expression of leukemia inhibitory factor coincides with the onset of blastocyst implantation. Proc Natl Acad Sci U S A 88(24):11408–11412
Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV, van der Oost J (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321(5891):960–964
Carter JC, Sheehan DW, Prochoroff A, Birnkrant DJ (2018) Muscular dystrophies. Clin Chest Med 39(2):377–389
Charlesworth CT, Deshpande PS, Dever DP, Camarena J, Lemgart VT, Cromer MK, Vakulskas CA, Collingwood MA, Zhang L, Bode NM, Behlke MA, Dejene B, Cieniewicz B, Romano R, Lesch BJ, Gomez-Ospina N, Mantri S, Pavel-Dinu M, Weinberg KI, Porteus MH (2019) Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med 25(2):249–254
Chew WL (2018) Immunity to CRISPR Cas9 and Cas12a therapeutics. Wiley Interdiscip Rev Syst Biol Med 10(1)
Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, Zhang F (2017) RNA editing with CRISPR-Cas13. Science 358(6366):1019–1027
Crawford TO, Pardo CA (1996) The neurobiology of childhood spinal muscular atrophy. Neurobiol Dis 3(2):97–110
Crudele JM, Chamberlain JS (2018) Cas9 immunity creates challenges for CRISPR gene editing therapies. Nat Commun 9(1):3497
Daiger SP, Sullivan LS, Bowne SJ (2013) Genes and mutations causing retinitis pigmentosa. Clin Genet 84(2):132–141
Datsenko KA, Pougach K, Tikhonov A, Wanner BL, Severinov K, Semenova E (2012) Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat Commun 3:945
Deveau H, Garneau JE, Moineau S (2010) CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol 64:475–493
Dong D, Ren K, Qiu X, Zheng J, Guo M, Guan X, Liu H, Li N, Zhang B, Yang D, Ma C, Wang S, Wu D, Ma Y, Fan S, Wang J, Gao N, Huang Z (2016) The crystal structure of Cpf1 in complex with CRISPR RNA. Nature 532(7600):522–526
Elsheikh B, Prior T, Zhang X, Miller R, Kolb SJ, Moore D, Bradley W, Barohn R, Bryan W, Gelinas D, Iannaccone S, Leshner R, Mendell JR, Mendoza M, Russman B, Smith S, King W, Kissel JT (2009) An analysis of disease severity based on SMN2 copy number in adults with spinal muscular atrophy. Muscle Nerve 40(4):652–656
Elworthy S, Rutherford HA, Prajsnar TK, Hamilton NM, Vogt K, Renshaw SA, Condliffe AM (2023) Activated PI3K delta syndrome 1 mutations cause neutrophilia in zebrafish larvae. Dis Model Mech 16(3):dmm049841
Fonfara I, Richter H, Bratovic M, Le Rhun A, Charpentier E (2016) The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532(7600):517–521
Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32(3):279–284
Gao P, Yang H, Rajashankar KR, Huang Z, Patel DJ (2016) Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition. Cell Res 26(8):901–913
Gao L, Cox DBT, Yan WX, Manteiga JC, Schneider MW, Yamano T, Nishimasu H, Nureki O, Crosetto N, Zhang F (2017) Engineered Cpf1 variants with altered PAM specificities. Nat Biotechnol 35(8):789–792
Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadan AH, Moineau S (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468(7320):67–71
Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Menissier F, Massabanda J, Fries R, Hanset R, Georges M (1997) A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 17(1):71–74
Guan L, Han Y, Yang C, Lu S, Du J, Li H, Lin J (2022) CRISPR-Cas9-Mediated Gene Therapy in Neurological disorders. Mol Neurobiol 59(2):968–982
Gutierrez LL, Maslinkiewicz A, Curi R, de Bittencourt PI Jr (2008) Atherosclerosis: a redox-sensitive lipid imbalance suppressible by cyclopentenone prostaglandins. Biochem Pharmacol 75(12):2245–2262
Hagerman RJ, Berry-Kravis E, Hazlett HC, Bailey DB Jr., Moine H, Kooy RF, Tassone F, Gantois I, Sonenberg N, Mandel JL, Hagerman PJ (2017) Fragile X syndrome. Nat Rev Dis Primers 3:17065
Heidenreich M, Zhang F (2015) Applications of CRISPR–Cas systems in neuroscience. Nat Rev Neurosci 17(1):36–44
Hoban MD, Bauer DE (2016) A genome editing primer for the hematologist. Blood 127(21):2525–2535
Hur JK, Kim K, Been KW, Baek G, Ye S, Hur JW, Ryu SM, Lee YS, Kim JS (2016) Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleoproteins. Nat Biotechnol 34(8):807–808
Kawamata M, Suzuki HI, Kimura R, Suzuki A (2023) Optimization of Cas9 activity through the addition of cytosine extensions to single-guide RNAs. Nat Biomed Eng 7(5):672–691
Kim S, Koo T, Jee H-G, Cho H-Y, Lee G, Lim D-G, Shin HS, Kim J-S (2018) CRISPR RNAs trigger innate immune responses in human cells. Genome Res 28(3):367–373
Kim YS, Kim GR, Park M, Yang SC, Park SH, Won JE, Lee JH, Shin HE, Song H, Kim HR (2020) Electroporation of AsCpf1/RNP at the Zygote Stage is an efficient genome editing method to Generate knock-out mice deficient in leukemia inhibitory factor. Tissue Eng Regen Med 17(1):45–53
Kitano K, Kim SY, Hakoshima T (2010) Structural basis for DNA strand separation by the unconventional winged-helix domain of RecQ helicase WRN. Structure 18(2):177–187
Koonin EV, Makarova KS, Zhang F (2017) Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37:67–78
Kountouris P, Lederer CW, Fanis P, Feleki X, Old J, Kleanthous M (2014) IthaGenes: an interactive database for haemoglobin variations and epidemiology. PLoS ONE 9(7):e103020
Lau YL, Chan LC, Chan YY, Ha SY, Yeung CY, Waye JS, Chui DH (1997) Prevalence and genotypes of alpha- and beta-thalassemia carriers in Hong Kong -- implications for population screening. N Engl J Med 336(18):1298–1301
Lee B, Lee K, Panda S, Gonzales-Rojas R, Chong A, Bugay V, Park HM, Brenner R, Murthy N, Lee HY (2018) Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours. Nat Biomed Eng 2(7):497–507
Lee JG, Ha CH, Yoon B, Cheong SA, Kim G, Lee DJ, Woo DC, Kim YH, Nam SY, Lee SW, Sung YH, Baek IJ (2019) Knockout rat models mimicking human atherosclerosis created by Cpf1-mediated gene targeting. Sci Rep 9(1):2628
Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80(1):155–165
Lei C, Li SY, Liu JK, Zheng X, Zhao GP, Wang J (2017) The CCTL (Cpf1-assisted cutting and taq DNA ligase-assisted ligation) method for efficient editing of large DNA constructs in vitro. Nucleic Acids Res 45(9):e74
Lewin AS, Del’Guidice T, Lepetit-Stoffaes J-P, Bordeleau L-J, Roberge J, Théberge V, Lauvaux C, Barbeau X, Trottier J, Dave V, Roy D-C, Gaillet B, Garnier A, Guay D (2018) Membrane permeabilizing amphiphilic peptide delivers recombinant transcription factor and CRISPR-Cas9/Cpf1 ribonucleoproteins in hard-to-modify cells. PLoS ONE 13(4):e0195558
Li B, Zhao W, Luo X, Zhang X, Li C, Zeng C, Dong Y (2017) Engineering CRISPR–Cpf1 crRNAs and mRNAs to maximize genome editing efficiency. Nat Biomedical Eng 1(5):0066
Li A, Tanner MR, Lee CM, Hurley AE, De Giorgi M, Jarrett KE, Davis TH, Doerfler AM, Bao G, Beeton C, Lagor WR (2020) AAV-CRISPR gene editing is negated by pre-existing immunity to Cas9. Mol Ther 28(6):1432–1441
Li W, Shi L, Zhuang Z, Wu H, Lian MM, Chen Y, Li L, Ge W, Jin Q, Zhang Q, Zhao Y, Liu Z, Ouyang Z, Ye YZ, Li Y, Wang H, Liao Y, Quan L, Xiao L, Lai L, Meng G, Wang K (2020b) Engineered pigs carrying a gain-of-function NLRP3 homozygous mutation can survive to Adulthood and accurately recapitulate human systemic spontaneous inflammatory responses. J Immunol 205(9):2532–2544
Li T, Yang Y, Qi H, Cui W, Zhang L, Fu X, He X, Liu M, Li PF, Yu T (2023) CRISPR/Cas9 therapeutics: progress and prospects. Signal Transduct Target Ther 8(1):36
Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, MacDonald ME, Stuhlmann H, Koup RA, Landau NR (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86(3):367–377
Liu Z, Liang J, Chen S, Wang K, Liu X, Liu B, Xia Y, Guo M, Zhang X, Sun G, Tian G (2020) Genome editing of CCR5 by AsCpf1 renders CD4(+)T cells resistance to HIV-1 infection. Cell Biosci 10:85
Lorson CL, Androphy EJ (2000) An exonic enhancer is required for inclusion of an essential exon in the SMA-determining gene SMN. Hum Mol Genet 9(2):259–265
Lorson CL, Hahnen E, Androphy EJ, Wirth B (1999) A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci U S A 96(11):6307–6311
Ma H, Marti-Gutierrez N, Park S-W, Wu J, Lee Y, Suzuki K, Koski A, Ji D, Hayama T, Ahmed R, Darby H, Van Dyken C, Li Y, Kang E, Park AR, Kim D, Kim S-T, Gong J, Gu Y, Xu X, Battaglia D, Krieg SA, Lee DM, Wu DH, Wolf DP, Heitner SB, Belmonte JCI, Amato P, Kim J-S, Kaul S, Mitalipov S (2017) Correction of a pathogenic gene mutation in human embryos. Nature 548(7668):413–419
Ma X, Chen X, Jin Y, Ge W, Wang W, Kong L, Ji J, Guo X, Huang J, Feng X-H, Fu J, Zhu S (2018) Small molecules promote CRISPR-Cpf1-mediated genome editing in human pluripotent stem cells. Nat Commun 9(1):1303
Madigan V, Zhang F, Dahlman JE (2023) Drug delivery systems for CRISPR-based genome editors. Nat Rev Drug Discov 22(11):875–894
Marais AD (2019) Apolipoprotein E in lipoprotein metabolism, health and cardiovascular disease. Pathology 51(2):165–176
Marraffini LA, Sontheimer EJ (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11(3):181–190
Min K, Yoon H, Jo I, Ha N-C, Jin KS, Kim J-S, Lee HH (2018) Structural insights into the apo-structure of Cpf1 protein from Francisella novicida. Biochem Biophys Res Commun 498(4):775–781
Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Almendros C (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155(Pt 3):733–740
Moreno-Mateos MA, Fernandez JP, Rouet R, Vejnar CE, Lane MA, Mis EK, Khokha MK, Doudna JA, Giraldez AJ (2017) CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing. Nat Commun 8(1): 2024
Murugan K, Seetharam AS, Severin AJ, Sashital DG (2020) CRISPR-Cas12a has widespread off-target and dsDNA-nicking effects. J Biol Chem 295(17):5538–5553
Origa R (2017) beta-thalassemia. Genet Med 19(6):609–619
Oshima J, Sidorova JM, Monnat RJ (2017) Werner syndrome: clinical features, pathogenesis and potential therapeutic interventions. Ageing Res Rev 33:105–114
Pagon RA (1988) Retinitis pigmentosa. Surv Ophthalmol 33(3):137–177
Park HM, Liu H, Wu J, Chong A, Mackley V, Fellmann C, Rao A, Jiang F, Chu H, Murthy N, Lee K (2018) Extension of the crRNA enhances Cpf1 gene editing in vitro and in vivo. Nat Commun 9(1):3313
Port F, Bullock SL (2016) Augmenting CRISPR applications in Drosophila with tRNA-flanked sgRNAs. Nat Methods 13(10):852–854
Putnam CD, Broderick L, Hoffman HM (2023) The discovery of NLRP3 and its function in cryopyrin-associated periodic syndromes and innate immunity. Immunol Rev 322(1):259–282
Qian J, Guan X, Xie B, Xu C, Niu J, Tang X, Li CH, Colecraft HM, Jaenisch R, Liu XS (2023) Multiplex epigenome editing of MECP2 to rescue Rett syndrome neurons. Sci Transl Med 15(679):eadd4666
Rádis-Baptista G, Campelo LS, Morlighem JRL, Melo LM, Freitas VJF (2017) Cell-penetrating peptides (CPPs): from delivery of nucleic acids and antigens to transduction of engineered nucleases for application in transgenesis. J Biotechnol 252:15–26
Riesenberg S, Maricic T (2018) Targeting repair pathways with small molecules increases precise genome editing in pluripotent stem cells. Nat Commun 9(1):2164
Safari F, Zare K, Negahdaripour M, Barekati-Mowahed M, Ghasemi Y (2019) CRISPR Cpf1 proteins: structure, function and implications for genome editing. Cell Bioscience 9:36
Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, Saragosti S, Lapoumeroulie C, Cognaux J, Forceille C, Muyldermans G, Verhofstede C, Burtonboy G, Georges M, Imai T, Rana S, Yi Y, Smyth RJ, Collman RG, Doms RW, Vassart G, Parmentier M (1996) Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382(6593):722–725
Schafer-Somi S (2003) Cytokines during early pregnancy of mammals: a review. Anim Reprod Sci 75(1–2):73–94
Shinoda H, Taguchi Y, Nakagawa R, Makino A, Okazaki S, Nakano M, Muramoto Y, Takahashi C, Takahashi I, Ando J, Noda T, Nureki O, Nishimasu H, Watanabe R (2021) Amplification-free RNA detection with CRISPR-Cas13. Commun Biol 4(1):476
Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W, Abudayyeh OO, Gootenberg JS, Makarova KS, Wolf YI, Severinov K, Zhang F, Koonin EV (2017) Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol 15(3):169–182
Sorek R, Kunin V, Hugenholtz P (2008) CRISPR–a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 6(3):181–186
Swarts DC, Jinek M (2018) Cas9 versus Cas12a/Cpf1: structure-function comparisons and implications for genome editing. Wiley Interdiscip Rev RNA 9(5):e1481
Swarts DC, van der Oost J, Jinek M (2017) Structural basis for Guide RNA Processing and seed-dependent DNA targeting by CRISPR-Cas12a. Mol Cell 66(2):221–233
Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, Spratt SK, Surosky RT, Giedlin MA, Nichol G, Holmes MC, Gregory PD, Ando DG, Kalos M, Collman RG, Binder-Scholl G, Plesa G, Hwang WT, Levine BL, June CH (2014) Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370(10):901–910
Teng F, Li J, Cui T, Xu K, Guo L, Gao Q, Feng G, Chen C, Han D, Zhou Q, Li W (2019) Enhanced mammalian genome editing by new Cas12a orthologs with optimized crRNA scaffolds. Genome Biol 20(1):15
Tsukamoto T, Sakai E, Iizuka S, Taracena-Gandara M, Sakurai F, Mizuguchi H (2018) Generation of the Adenovirus Vector-mediated CRISPR/Cpf1 system and the application for primary human hepatocytes prepared from Humanized mice with chimeric liver. Biol Pharm Bull 41(7):1089–1095
Verwaal R, Buiting-Wiessenhaan N, Dalhuijsen S, Roubos JA (2018) CRISPR/Cpf1 enables fast and simple genome editing of Saccharomyces cerevisiae. Yeast 35(2):201–211
Wang H, La Russa M, Qi LS (2016a) CRISPR/Cas9 in Genome Editing and Beyond. Annu Rev Biochem 85:227–264
Wang M, Zuris JA, Meng F, Rees H, Sun S, Deng P, Han Y, Gao X, Pouli D, Wu Q, Georgakoudi I, Liu DR, Xu Q (2016b) Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc Natl Acad Sci U S A 113(11):2868–2873
Wilkinson R, Wiedenheft B (2014) A CRISPR method for genome engineering. F1000Prime Rep 6:3
Wu H, Liu Q, Shi H, Xie J, Zhang Q, Ouyang Z, Li N, Yang Y, Liu Z, Zhao Y, Lai C, Ruan D, Peng J, Ge W, Chen F, Fan N, Jin Q, Liang Y, Lan T, Yang X, Wang X, Lei Z, Doevendans PA, Sluijter JPG, Wang K, Li X, Lai L (2018) Engineering CRISPR/Cpf1 with tRNA promotes genome editing capability in mammalian systems. Cell Mol Life Sci 75(19):3593–3607
Xiao Q, Chen S, Wang Q, Liu Z, Liu S, Deng H, Hou W, Wu D, Xiong Y, Li J, Guo D (2019) CCR5 editing by Staphylococcus aureus Cas9 in human primary CD4(+) T cells and hematopoietic stem/progenitor cells promotes HIV-1 resistance and CD4(+) T cell enrichment in humanized mice. Retrovirology 16(1):15
Xu S, Luk K, Yao Q, Shen AH, Zeng J, Wu Y, Luo HY, Brendel C, Pinello L, Chui DHK, Wolfe SA, Bauer DE (2019) Editing aberrant splice sites efficiently restores beta-globin expression in beta-thalassemia. Blood 133(21):2255–2262
Yamano T, Nishimasu H, Zetsche B, Hirano H, Slaymaker Ian M, Li Y, Fedorova I, Nakane T, Makarova Kira S, Koonin Eugene V, Ishitani R, Zhang F, Nureki O (2016) Crystal structure of Cpf1 in Complex with Guide RNA and target DNA. Cell 165(4):949–962
Yan MY, Yan HQ, Ren GX, Zhao JP, Guo XP, Sun YC (2017) CRISPR-Cas12a-Assisted recombineering in Bacteria. Appl Environ Microbiol 83(17)
Yang JM, Kim B, Kwak J, Lee MK, Kim JH, Baek IJ, Sung YH, Lee JY (2022) Development of a novel knockout model of retinitis pigmentosa using Pde6b-knockout Long-Evans rats. Front Med (Lausanne) 9:909182
Yeo JH, Jung BK, Lee H, Baek IJ, Sung YH, Shin HS, Kim HK, Seo KY, Lee JY (2019) Development of a Pde6b gene knockout rat model for studies of degenerative retinal diseases. Invest Ophthalmol Vis Sci 60(5):1519–1526
Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759–771
Zetsche B, Heidenreich M, Mohanraju P, Fedorova I, Kneppers J, DeGennaro EM, Winblad N, Choudhury SR, Abudayyeh OO, Gootenberg JS, Wu WY, Scott DA, Severinov K, van der Oost J, Zhang F (2017) Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat Biotechnol 35(1):31–34
Zhan X, Li Q, Xu G, Xiao X, Bai Z (2023) The mechanism of NLRP3 inflammasome activation and its pharmacological inhibitors. Front Immunol 13:1109938
Zhang Y, Long C, Li H, McAnally JR, Baskin KK, Shelton JM, Bassel-Duby R, Olson EN (2017) CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. Sci Adv 3(4):e1602814
Zhou M, Hu Z, Qiu L, Zhou T, Feng M, Hu Q, Zeng B, Li Z, Sun Q, Wu Y, Liu X, Wu L, Liang D (2018) Seamless Genetic Conversion of SMN2 to SMN1 via CRISPR/Cpf1 and single-stranded oligodeoxynucleotides in spinal muscular atrophy patient-specific Induced Pluripotent Stem cells. Hum Gene Ther 29(11):1252–1263
Zhu H, Liang C (2019) CRISPR-DT: designing gRNAs for the CRISPR-Cpf1 system with improved target efficiency and specificity. Bioinformatics 35(16):2783–2789
Zou Y, Li Z, Zou Y, Hao H, Hu J, Li N, Li Q (2019) Generation of pigs with a Belgian Blue mutation in MSTN using CRISPR/Cpf1-assisted ssODN-mediated homologous recombination. J Integr Agric 6:1329–1336
Funding
This work was supported by the National Natural Science Foundation of China (No. 81801127), Key Technologies R&D Program of Henan Province (No. 242102310134), Doctoral Scientific Research Program Foundation of Xinxiang Medical University (No. XYBSKYZZ201523).
Author information
Authors and Affiliations
Contributions
YH and ZJ: Investigation, Conceptualization, Figure production, Writing - review & editing. KX and YL: Investigation, Figure production and Writing. SL: Figure production. LG: Supervision, Conceptualization, Funding acquisition, Writing - review & editing. All the authors read and approved the manuscript.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
Not applicable.
Conflict of interest
The authors declare that there are no conflicts of interest.
Additional information
Communicated by Martine Collart.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Han, Y., Jia, Z., Xu, K. et al. CRISPR-Cpf1 system and its applications in animal genome editing. Mol Genet Genomics 299, 75 (2024). https://doi.org/10.1007/s00438-024-02166-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00438-024-02166-x