Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

CRISPR-Cpf1 system and its applications in animal genome editing

  • Review
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The clustered regularly interspaced short palindromic repeats (CRISPR) and their associated protein (Cas) system is a gene editing technology guided by RNA endonuclease. The CRISPR-Cas12a (also known as CRISPR-Cpf1) system is extensively utilized in genome editing research due to its accuracy and high efficiency. In this paper, we primarily focus on the application of CRISPR-Cpf1 technology in the construction of disease models and gene therapy. Firstly, the structure and mechanism of the CRISPR-Cas system are introduced. Secondly, the similarities and differences between CRISPR-Cpf1 and CRISPR-Cas9 technologies are compared. Thirdly, the main focus is on the application of the CRISPR-Cpf1 system in cell and animal genome editing. Finally, the challenges faced by CRISPR-Cpf1 technology and corresponding strategies are analyzed. Although CRISPR-Cpf1 technology has certain off-target effects, it can effectively and accurately edit cell and animal genomes, and has significant advantages in the preclinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

No data was used for the research described in the article.

References

  • Aartsma-Rus A, Fokkema I, Verschuuren J, Ginjaar I, van Deutekom J, van Ommen GJ, den Dunnen JT (2009) Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat 30(3):293–299

    Article  PubMed  Google Scholar 

  • Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, Verdine V, Cox DBT, Kellner MJ, Regev A, Lander ES, Voytas DF, Ting AY, Zhang F (2017) RNA targeting with CRISPR-Cas13. Nature 550(7675):280–284

    Article  PubMed  PubMed Central  Google Scholar 

  • Alcón P, Montoya G, Stella S (2017) Assembly of Francisella novicida Cpf1 endonuclease in complex with guide RNA and target DNA. Acta Crystallogr F Struct Biol Commun 73(Pt 7):409–415

    Article  PubMed  PubMed Central  Google Scholar 

  • Angelini C, Peterle E (2012) Old and new therapeutic developments in steroid treatment in Duchenne muscular dystrophy. Acta Myol 31(1):9–15

    PubMed  PubMed Central  Google Scholar 

  • Aravalli RN, Steer CJ (2018) CRISPR/Cas9 therapeutics for liver diseases. J Cell Biochem 119(6):4265–4278

    Article  CAS  PubMed  Google Scholar 

  • Barre-Sinoussi F, Ross AL, Delfraissy JF (2013) Past, present and future: 30 years of HIV research. Nat Rev Microbiol 11(12):877–883

    Article  CAS  PubMed  Google Scholar 

  • Bear MF, Huber KM, Warren ST (2004) The mGluR theory of fragile X mental retardation. Trends Neurosci 27(7):370–377

    Article  CAS  PubMed  Google Scholar 

  • Begemann MB, Gray BN, January E, Gordon GC, He Y, Liu H, Wu X, Brutnell TP, Mockler TC, Oufattole M (2017) Precise insertion and guided editing of higher plant genomes using Cpf1 CRISPR nucleases. Sci Rep 7(1):11606

    Article  PubMed  PubMed Central  Google Scholar 

  • Berglund LJ (2023) Modulating the PI3K signalling pathway in activated PI3K Delta Syndrome: a clinical perspective. J Clin Immunol 44(1):34

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhatt H, Brunet LJ, Stewart CL (1991) Uterine expression of leukemia inhibitory factor coincides with the onset of blastocyst implantation. Proc Natl Acad Sci U S A 88(24):11408–11412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV, van der Oost J (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321(5891):960–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter JC, Sheehan DW, Prochoroff A, Birnkrant DJ (2018) Muscular dystrophies. Clin Chest Med 39(2):377–389

    Article  PubMed  Google Scholar 

  • Charlesworth CT, Deshpande PS, Dever DP, Camarena J, Lemgart VT, Cromer MK, Vakulskas CA, Collingwood MA, Zhang L, Bode NM, Behlke MA, Dejene B, Cieniewicz B, Romano R, Lesch BJ, Gomez-Ospina N, Mantri S, Pavel-Dinu M, Weinberg KI, Porteus MH (2019) Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med 25(2):249–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chew WL (2018) Immunity to CRISPR Cas9 and Cas12a therapeutics. Wiley Interdiscip Rev Syst Biol Med 10(1)

  • Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, Zhang F (2017) RNA editing with CRISPR-Cas13. Science 358(6366):1019–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crawford TO, Pardo CA (1996) The neurobiology of childhood spinal muscular atrophy. Neurobiol Dis 3(2):97–110

    Article  CAS  PubMed  Google Scholar 

  • Crudele JM, Chamberlain JS (2018) Cas9 immunity creates challenges for CRISPR gene editing therapies. Nat Commun 9(1):3497

    Article  PubMed  PubMed Central  Google Scholar 

  • Daiger SP, Sullivan LS, Bowne SJ (2013) Genes and mutations causing retinitis pigmentosa. Clin Genet 84(2):132–141

    Article  CAS  PubMed  Google Scholar 

  • Datsenko KA, Pougach K, Tikhonov A, Wanner BL, Severinov K, Semenova E (2012) Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat Commun 3:945

    Article  PubMed  Google Scholar 

  • Deveau H, Garneau JE, Moineau S (2010) CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol 64:475–493

    Article  CAS  PubMed  Google Scholar 

  • Dong D, Ren K, Qiu X, Zheng J, Guo M, Guan X, Liu H, Li N, Zhang B, Yang D, Ma C, Wang S, Wu D, Ma Y, Fan S, Wang J, Gao N, Huang Z (2016) The crystal structure of Cpf1 in complex with CRISPR RNA. Nature 532(7600):522–526

    Article  CAS  PubMed  Google Scholar 

  • Elsheikh B, Prior T, Zhang X, Miller R, Kolb SJ, Moore D, Bradley W, Barohn R, Bryan W, Gelinas D, Iannaccone S, Leshner R, Mendell JR, Mendoza M, Russman B, Smith S, King W, Kissel JT (2009) An analysis of disease severity based on SMN2 copy number in adults with spinal muscular atrophy. Muscle Nerve 40(4):652–656

    Article  PubMed  Google Scholar 

  • Elworthy S, Rutherford HA, Prajsnar TK, Hamilton NM, Vogt K, Renshaw SA, Condliffe AM (2023) Activated PI3K delta syndrome 1 mutations cause neutrophilia in zebrafish larvae. Dis Model Mech 16(3):dmm049841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fonfara I, Richter H, Bratovic M, Le Rhun A, Charpentier E (2016) The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532(7600):517–521

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32(3):279–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao P, Yang H, Rajashankar KR, Huang Z, Patel DJ (2016) Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition. Cell Res 26(8):901–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao L, Cox DBT, Yan WX, Manteiga JC, Schneider MW, Yamano T, Nishimasu H, Nureki O, Crosetto N, Zhang F (2017) Engineered Cpf1 variants with altered PAM specificities. Nat Biotechnol 35(8):789–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadan AH, Moineau S (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468(7320):67–71

    Article  CAS  PubMed  Google Scholar 

  • Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Menissier F, Massabanda J, Fries R, Hanset R, Georges M (1997) A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 17(1):71–74

    Article  CAS  PubMed  Google Scholar 

  • Guan L, Han Y, Yang C, Lu S, Du J, Li H, Lin J (2022) CRISPR-Cas9-Mediated Gene Therapy in Neurological disorders. Mol Neurobiol 59(2):968–982

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez LL, Maslinkiewicz A, Curi R, de Bittencourt PI Jr (2008) Atherosclerosis: a redox-sensitive lipid imbalance suppressible by cyclopentenone prostaglandins. Biochem Pharmacol 75(12):2245–2262

    Article  CAS  PubMed  Google Scholar 

  • Hagerman RJ, Berry-Kravis E, Hazlett HC, Bailey DB Jr., Moine H, Kooy RF, Tassone F, Gantois I, Sonenberg N, Mandel JL, Hagerman PJ (2017) Fragile X syndrome. Nat Rev Dis Primers 3:17065

    Article  PubMed  Google Scholar 

  • Heidenreich M, Zhang F (2015) Applications of CRISPR–Cas systems in neuroscience. Nat Rev Neurosci 17(1):36–44

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoban MD, Bauer DE (2016) A genome editing primer for the hematologist. Blood 127(21):2525–2535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hur JK, Kim K, Been KW, Baek G, Ye S, Hur JW, Ryu SM, Lee YS, Kim JS (2016) Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleoproteins. Nat Biotechnol 34(8):807–808

    Article  CAS  PubMed  Google Scholar 

  • Kawamata M, Suzuki HI, Kimura R, Suzuki A (2023) Optimization of Cas9 activity through the addition of cytosine extensions to single-guide RNAs. Nat Biomed Eng 7(5):672–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Koo T, Jee H-G, Cho H-Y, Lee G, Lim D-G, Shin HS, Kim J-S (2018) CRISPR RNAs trigger innate immune responses in human cells. Genome Res 28(3):367–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YS, Kim GR, Park M, Yang SC, Park SH, Won JE, Lee JH, Shin HE, Song H, Kim HR (2020) Electroporation of AsCpf1/RNP at the Zygote Stage is an efficient genome editing method to Generate knock-out mice deficient in leukemia inhibitory factor. Tissue Eng Regen Med 17(1):45–53

    Article  CAS  PubMed  Google Scholar 

  • Kitano K, Kim SY, Hakoshima T (2010) Structural basis for DNA strand separation by the unconventional winged-helix domain of RecQ helicase WRN. Structure 18(2):177–187

    Article  CAS  PubMed  Google Scholar 

  • Koonin EV, Makarova KS, Zhang F (2017) Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37:67–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kountouris P, Lederer CW, Fanis P, Feleki X, Old J, Kleanthous M (2014) IthaGenes: an interactive database for haemoglobin variations and epidemiology. PLoS ONE 9(7):e103020

    Article  PubMed  PubMed Central  Google Scholar 

  • Lau YL, Chan LC, Chan YY, Ha SY, Yeung CY, Waye JS, Chui DH (1997) Prevalence and genotypes of alpha- and beta-thalassemia carriers in Hong Kong -- implications for population screening. N Engl J Med 336(18):1298–1301

    Article  CAS  PubMed  Google Scholar 

  • Lee B, Lee K, Panda S, Gonzales-Rojas R, Chong A, Bugay V, Park HM, Brenner R, Murthy N, Lee HY (2018) Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours. Nat Biomed Eng 2(7):497–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JG, Ha CH, Yoon B, Cheong SA, Kim G, Lee DJ, Woo DC, Kim YH, Nam SY, Lee SW, Sung YH, Baek IJ (2019) Knockout rat models mimicking human atherosclerosis created by Cpf1-mediated gene targeting. Sci Rep 9(1):2628

    Article  PubMed  PubMed Central  Google Scholar 

  • Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80(1):155–165

    Article  CAS  PubMed  Google Scholar 

  • Lei C, Li SY, Liu JK, Zheng X, Zhao GP, Wang J (2017) The CCTL (Cpf1-assisted cutting and taq DNA ligase-assisted ligation) method for efficient editing of large DNA constructs in vitro. Nucleic Acids Res 45(9):e74

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lewin AS, Del’Guidice T, Lepetit-Stoffaes J-P, Bordeleau L-J, Roberge J, Théberge V, Lauvaux C, Barbeau X, Trottier J, Dave V, Roy D-C, Gaillet B, Garnier A, Guay D (2018) Membrane permeabilizing amphiphilic peptide delivers recombinant transcription factor and CRISPR-Cas9/Cpf1 ribonucleoproteins in hard-to-modify cells. PLoS ONE 13(4):e0195558

    Article  Google Scholar 

  • Li B, Zhao W, Luo X, Zhang X, Li C, Zeng C, Dong Y (2017) Engineering CRISPR–Cpf1 crRNAs and mRNAs to maximize genome editing efficiency. Nat Biomedical Eng 1(5):0066

    Article  CAS  Google Scholar 

  • Li A, Tanner MR, Lee CM, Hurley AE, De Giorgi M, Jarrett KE, Davis TH, Doerfler AM, Bao G, Beeton C, Lagor WR (2020) AAV-CRISPR gene editing is negated by pre-existing immunity to Cas9. Mol Ther 28(6):1432–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Shi L, Zhuang Z, Wu H, Lian MM, Chen Y, Li L, Ge W, Jin Q, Zhang Q, Zhao Y, Liu Z, Ouyang Z, Ye YZ, Li Y, Wang H, Liao Y, Quan L, Xiao L, Lai L, Meng G, Wang K (2020b) Engineered pigs carrying a gain-of-function NLRP3 homozygous mutation can survive to Adulthood and accurately recapitulate human systemic spontaneous inflammatory responses. J Immunol 205(9):2532–2544

    Article  CAS  PubMed  Google Scholar 

  • Li T, Yang Y, Qi H, Cui W, Zhang L, Fu X, He X, Liu M, Li PF, Yu T (2023) CRISPR/Cas9 therapeutics: progress and prospects. Signal Transduct Target Ther 8(1):36

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, MacDonald ME, Stuhlmann H, Koup RA, Landau NR (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86(3):367–377

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Liang J, Chen S, Wang K, Liu X, Liu B, Xia Y, Guo M, Zhang X, Sun G, Tian G (2020) Genome editing of CCR5 by AsCpf1 renders CD4(+)T cells resistance to HIV-1 infection. Cell Biosci 10:85

    Article  PubMed  PubMed Central  Google Scholar 

  • Lorson CL, Androphy EJ (2000) An exonic enhancer is required for inclusion of an essential exon in the SMA-determining gene SMN. Hum Mol Genet 9(2):259–265

    Article  CAS  PubMed  Google Scholar 

  • Lorson CL, Hahnen E, Androphy EJ, Wirth B (1999) A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci U S A 96(11):6307–6311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma H, Marti-Gutierrez N, Park S-W, Wu J, Lee Y, Suzuki K, Koski A, Ji D, Hayama T, Ahmed R, Darby H, Van Dyken C, Li Y, Kang E, Park AR, Kim D, Kim S-T, Gong J, Gu Y, Xu X, Battaglia D, Krieg SA, Lee DM, Wu DH, Wolf DP, Heitner SB, Belmonte JCI, Amato P, Kim J-S, Kaul S, Mitalipov S (2017) Correction of a pathogenic gene mutation in human embryos. Nature 548(7668):413–419

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Chen X, Jin Y, Ge W, Wang W, Kong L, Ji J, Guo X, Huang J, Feng X-H, Fu J, Zhu S (2018) Small molecules promote CRISPR-Cpf1-mediated genome editing in human pluripotent stem cells. Nat Commun 9(1):1303

    Article  PubMed  PubMed Central  Google Scholar 

  • Madigan V, Zhang F, Dahlman JE (2023) Drug delivery systems for CRISPR-based genome editors. Nat Rev Drug Discov 22(11):875–894

    Article  CAS  PubMed  Google Scholar 

  • Marais AD (2019) Apolipoprotein E in lipoprotein metabolism, health and cardiovascular disease. Pathology 51(2):165–176

    Article  CAS  PubMed  Google Scholar 

  • Marraffini LA, Sontheimer EJ (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11(3):181–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min K, Yoon H, Jo I, Ha N-C, Jin KS, Kim J-S, Lee HH (2018) Structural insights into the apo-structure of Cpf1 protein from Francisella novicida. Biochem Biophys Res Commun 498(4):775–781

    Article  CAS  PubMed  Google Scholar 

  • Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Almendros C (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155(Pt 3):733–740

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Mateos MA, Fernandez JP, Rouet R, Vejnar CE, Lane MA, Mis EK, Khokha MK, Doudna JA, Giraldez AJ (2017) CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing. Nat Commun 8(1): 2024

  • Murugan K, Seetharam AS, Severin AJ, Sashital DG (2020) CRISPR-Cas12a has widespread off-target and dsDNA-nicking effects. J Biol Chem 295(17):5538–5553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Origa R (2017) beta-thalassemia. Genet Med 19(6):609–619

    Article  CAS  PubMed  Google Scholar 

  • Oshima J, Sidorova JM, Monnat RJ (2017) Werner syndrome: clinical features, pathogenesis and potential therapeutic interventions. Ageing Res Rev 33:105–114

    Article  CAS  PubMed  Google Scholar 

  • Pagon RA (1988) Retinitis pigmentosa. Surv Ophthalmol 33(3):137–177

    Article  CAS  PubMed  Google Scholar 

  • Park HM, Liu H, Wu J, Chong A, Mackley V, Fellmann C, Rao A, Jiang F, Chu H, Murthy N, Lee K (2018) Extension of the crRNA enhances Cpf1 gene editing in vitro and in vivo. Nat Commun 9(1):3313

    Article  PubMed  PubMed Central  Google Scholar 

  • Port F, Bullock SL (2016) Augmenting CRISPR applications in Drosophila with tRNA-flanked sgRNAs. Nat Methods 13(10):852–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putnam CD, Broderick L, Hoffman HM (2023) The discovery of NLRP3 and its function in cryopyrin-associated periodic syndromes and innate immunity. Immunol Rev 322(1):259–282

    Article  PubMed  Google Scholar 

  • Qian J, Guan X, Xie B, Xu C, Niu J, Tang X, Li CH, Colecraft HM, Jaenisch R, Liu XS (2023) Multiplex epigenome editing of MECP2 to rescue Rett syndrome neurons. Sci Transl Med 15(679):eadd4666

    Article  CAS  PubMed  Google Scholar 

  • Rádis-Baptista G, Campelo LS, Morlighem JRL, Melo LM, Freitas VJF (2017) Cell-penetrating peptides (CPPs): from delivery of nucleic acids and antigens to transduction of engineered nucleases for application in transgenesis. J Biotechnol 252:15–26

    Article  PubMed  Google Scholar 

  • Riesenberg S, Maricic T (2018) Targeting repair pathways with small molecules increases precise genome editing in pluripotent stem cells. Nat Commun 9(1):2164

    Article  PubMed  PubMed Central  Google Scholar 

  • Safari F, Zare K, Negahdaripour M, Barekati-Mowahed M, Ghasemi Y (2019) CRISPR Cpf1 proteins: structure, function and implications for genome editing. Cell Bioscience 9:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, Saragosti S, Lapoumeroulie C, Cognaux J, Forceille C, Muyldermans G, Verhofstede C, Burtonboy G, Georges M, Imai T, Rana S, Yi Y, Smyth RJ, Collman RG, Doms RW, Vassart G, Parmentier M (1996) Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382(6593):722–725

    Article  CAS  PubMed  Google Scholar 

  • Schafer-Somi S (2003) Cytokines during early pregnancy of mammals: a review. Anim Reprod Sci 75(1–2):73–94

    Article  CAS  PubMed  Google Scholar 

  • Shinoda H, Taguchi Y, Nakagawa R, Makino A, Okazaki S, Nakano M, Muramoto Y, Takahashi C, Takahashi I, Ando J, Noda T, Nureki O, Nishimasu H, Watanabe R (2021) Amplification-free RNA detection with CRISPR-Cas13. Commun Biol 4(1):476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W, Abudayyeh OO, Gootenberg JS, Makarova KS, Wolf YI, Severinov K, Zhang F, Koonin EV (2017) Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol 15(3):169–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorek R, Kunin V, Hugenholtz P (2008) CRISPR–a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 6(3):181–186

    Article  CAS  PubMed  Google Scholar 

  • Swarts DC, Jinek M (2018) Cas9 versus Cas12a/Cpf1: structure-function comparisons and implications for genome editing. Wiley Interdiscip Rev RNA 9(5):e1481

    Article  PubMed  Google Scholar 

  • Swarts DC, van der Oost J, Jinek M (2017) Structural basis for Guide RNA Processing and seed-dependent DNA targeting by CRISPR-Cas12a. Mol Cell 66(2):221–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, Spratt SK, Surosky RT, Giedlin MA, Nichol G, Holmes MC, Gregory PD, Ando DG, Kalos M, Collman RG, Binder-Scholl G, Plesa G, Hwang WT, Levine BL, June CH (2014) Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370(10):901–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng F, Li J, Cui T, Xu K, Guo L, Gao Q, Feng G, Chen C, Han D, Zhou Q, Li W (2019) Enhanced mammalian genome editing by new Cas12a orthologs with optimized crRNA scaffolds. Genome Biol 20(1):15

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsukamoto T, Sakai E, Iizuka S, Taracena-Gandara M, Sakurai F, Mizuguchi H (2018) Generation of the Adenovirus Vector-mediated CRISPR/Cpf1 system and the application for primary human hepatocytes prepared from Humanized mice with chimeric liver. Biol Pharm Bull 41(7):1089–1095

    Article  CAS  PubMed  Google Scholar 

  • Verwaal R, Buiting-Wiessenhaan N, Dalhuijsen S, Roubos JA (2018) CRISPR/Cpf1 enables fast and simple genome editing of Saccharomyces cerevisiae. Yeast 35(2):201–211

    Article  CAS  PubMed  Google Scholar 

  • Wang H, La Russa M, Qi LS (2016a) CRISPR/Cas9 in Genome Editing and Beyond. Annu Rev Biochem 85:227–264

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Zuris JA, Meng F, Rees H, Sun S, Deng P, Han Y, Gao X, Pouli D, Wu Q, Georgakoudi I, Liu DR, Xu Q (2016b) Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc Natl Acad Sci U S A 113(11):2868–2873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson R, Wiedenheft B (2014) A CRISPR method for genome engineering. F1000Prime Rep 6:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu H, Liu Q, Shi H, Xie J, Zhang Q, Ouyang Z, Li N, Yang Y, Liu Z, Zhao Y, Lai C, Ruan D, Peng J, Ge W, Chen F, Fan N, Jin Q, Liang Y, Lan T, Yang X, Wang X, Lei Z, Doevendans PA, Sluijter JPG, Wang K, Li X, Lai L (2018) Engineering CRISPR/Cpf1 with tRNA promotes genome editing capability in mammalian systems. Cell Mol Life Sci 75(19):3593–3607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Q, Chen S, Wang Q, Liu Z, Liu S, Deng H, Hou W, Wu D, Xiong Y, Li J, Guo D (2019) CCR5 editing by Staphylococcus aureus Cas9 in human primary CD4(+) T cells and hematopoietic stem/progenitor cells promotes HIV-1 resistance and CD4(+) T cell enrichment in humanized mice. Retrovirology 16(1):15

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu S, Luk K, Yao Q, Shen AH, Zeng J, Wu Y, Luo HY, Brendel C, Pinello L, Chui DHK, Wolfe SA, Bauer DE (2019) Editing aberrant splice sites efficiently restores beta-globin expression in beta-thalassemia. Blood 133(21):2255–2262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamano T, Nishimasu H, Zetsche B, Hirano H, Slaymaker Ian M, Li Y, Fedorova I, Nakane T, Makarova Kira S, Koonin Eugene V, Ishitani R, Zhang F, Nureki O (2016) Crystal structure of Cpf1 in Complex with Guide RNA and target DNA. Cell 165(4):949–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan MY, Yan HQ, Ren GX, Zhao JP, Guo XP, Sun YC (2017) CRISPR-Cas12a-Assisted recombineering in Bacteria. Appl Environ Microbiol 83(17)

  • Yang JM, Kim B, Kwak J, Lee MK, Kim JH, Baek IJ, Sung YH, Lee JY (2022) Development of a novel knockout model of retinitis pigmentosa using Pde6b-knockout Long-Evans rats. Front Med (Lausanne) 9:909182

    Article  PubMed  Google Scholar 

  • Yeo JH, Jung BK, Lee H, Baek IJ, Sung YH, Shin HS, Kim HK, Seo KY, Lee JY (2019) Development of a Pde6b gene knockout rat model for studies of degenerative retinal diseases. Invest Ophthalmol Vis Sci 60(5):1519–1526

    Article  CAS  PubMed  Google Scholar 

  • Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zetsche B, Heidenreich M, Mohanraju P, Fedorova I, Kneppers J, DeGennaro EM, Winblad N, Choudhury SR, Abudayyeh OO, Gootenberg JS, Wu WY, Scott DA, Severinov K, van der Oost J, Zhang F (2017) Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat Biotechnol 35(1):31–34

    Article  CAS  PubMed  Google Scholar 

  • Zhan X, Li Q, Xu G, Xiao X, Bai Z (2023) The mechanism of NLRP3 inflammasome activation and its pharmacological inhibitors. Front Immunol 13:1109938

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Long C, Li H, McAnally JR, Baskin KK, Shelton JM, Bassel-Duby R, Olson EN (2017) CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. Sci Adv 3(4):e1602814

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou M, Hu Z, Qiu L, Zhou T, Feng M, Hu Q, Zeng B, Li Z, Sun Q, Wu Y, Liu X, Wu L, Liang D (2018) Seamless Genetic Conversion of SMN2 to SMN1 via CRISPR/Cpf1 and single-stranded oligodeoxynucleotides in spinal muscular atrophy patient-specific Induced Pluripotent Stem cells. Hum Gene Ther 29(11):1252–1263

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Liang C (2019) CRISPR-DT: designing gRNAs for the CRISPR-Cpf1 system with improved target efficiency and specificity. Bioinformatics 35(16):2783–2789

    Article  CAS  PubMed  Google Scholar 

  • Zou Y, Li Z, Zou Y, Hao H, Hu J, Li N, Li Q (2019) Generation of pigs with a Belgian Blue mutation in MSTN using CRISPR/Cpf1-assisted ssODN-mediated homologous recombination. J Integr Agric 6:1329–1336

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81801127), Key Technologies R&D Program of Henan Province (No. 242102310134), Doctoral Scientific Research Program Foundation of Xinxiang Medical University (No. XYBSKYZZ201523).

Author information

Authors and Affiliations

Authors

Contributions

YH and ZJ: Investigation, Conceptualization, Figure production, Writing - review & editing. KX and YL: Investigation, Figure production and Writing. SL: Figure production. LG: Supervision, Conceptualization, Funding acquisition, Writing - review & editing. All the authors read and approved the manuscript.

Corresponding author

Correspondence to Lihong Guan.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Communicated by Martine Collart.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Jia, Z., Xu, K. et al. CRISPR-Cpf1 system and its applications in animal genome editing. Mol Genet Genomics 299, 75 (2024). https://doi.org/10.1007/s00438-024-02166-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00438-024-02166-x

Keywords