Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The abstract MAC layer

  • Published:
Distributed Computing Aims and scope Submit manuscript

Abstract

A diversity of possible communication assumptions complicates the study of algorithms and lower bounds for radio networks. We address this problem by defining an abstract MAC layer. This service provides reliable local broadcast communication, with timing guarantees stated in terms of a collection of abstract delay functions applied to the relevant contention. Algorithm designers can analyze their algorithms in terms of these functions, independently of specific channel behavior. Concrete implementations of the abstract MAC layer over basic radio network models generate concrete definitions for these delay functions, automatically adapting bounds proven for the abstract service to bounds for the specific radio network under consideration. To illustrate this approach, we use the abstract MAC layer to study the new problem of Multi-Message Broadcast, a generalization of standard single-message broadcast in which multiple messages can originate at different times and locations in the network. We present and analyze two algorithms for Multi-Message Broadcast in static networks: a simple greedy algorithm and one that uses regional leaders. We then indicate how these results can be extended to mobile networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 80211 I: Wireless LAN MAC and Physical Layer Specifications June (1999)

  2. Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: On the complexity of radio communication. In: The Proceedings of the Symposium on Theory of Computing (1989)

  3. Bar-Yehuda R., Goldreich O., Itai A.: Efficient emulation of single-hop radio network with collision detection on multi-hop radio network with no collision detection. Distrib. Comput. 5, 67–71 (1991)

    Article  MATH  Google Scholar 

  4. Bar-Yehuda R., Goldreich O., Itai A.: On the time-complexity of broadcast in multi-hop radio networks: an exponential gap between determinism and randomization. J. Comput. Syst. Sci. 45(1), 104–126 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chlamtac I., Kutten S.: On broadcasting in radio networks: problem analysis and protocol design. IEEE Trans. Commun. 33(12), 1240–1246 (1985)

    Article  MATH  Google Scholar 

  6. Chlebus, B.S., Gasieniec, L., Gibbons, A., Pelc, A., Rytter, W.: Deterministic broadcasting in unknown radio networks. In: The Proceedings of the Symposium on Discrete Algorithms (2000)

  7. Chlebus B.S., Gasieniec L., Gibbons A., Pelc A., Rytter W.: Deterministic broadcasting in ad hoc radio networks. Distrib. Comput. 15(1), 27–38 (2002)

    Article  Google Scholar 

  8. Chockler G., Demirbas M., Gilbert S., Lynch N., Newport C., Nolte T.: Consensus and collision detectors in radio networks. Distrib. Comput. 21, 55–84 (2008)

    Article  Google Scholar 

  9. Clementi A., Monti A., Silvestri R.: Round Robin is optimal for fault-tolerant broadcasting on wireless networks. J. Parallel Distrib. Comput. 64(1), 89–96 (2004)

    Article  MATH  Google Scholar 

  10. Cornejo, A., Lynch, N., Viqar, S., Welch, J.: A neighbor discovery service using an abstract MAC layer. In: The Proceedings of the Allerton Conference on Communication, Control and Computing (2009)

  11. Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown topology. In: The Proceedings of the Symposium on Foundations of Computer Science (2003)

  12. Das, B., Bharghavan, V.: Routing in ad-hoc networks using minimum connected dominating sets. In: The International Conference on Computer Communication (1997)

  13. Gasieniec L., Pelc A., Peleg D.: The wakeup problem in synchronous broadcast systems. SIAM J. Discret. Math. 14(2), 207–222 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gollakota, S., Katabi, D.: ZigZag decoding: combating hidden terminals in wireless networks. In: The Proceedings of the ACM SIGCOMM Conference (2008)

  15. Goussevskaia, O., Moscibroda, T., Wattenhofer, R.: Local broadcasting in the physical interference model. In: Joint Workshop on Foundations of Mobile Computing (2008)

  16. Gupta P., Kumar P.R.: The capacity of wireless networks. IEEE Trans. Inf. Theory IT-46(2), 388–404 (2000)

    Article  MathSciNet  Google Scholar 

  17. Ingram, R., Radeva, T., Shields, P., Walter, J., Welch, J.: An asynchronous leader election algorithm for dynamic networks without perfect clocks. In: The Proceedings of the International Symposium on Parallel and Distributed Processing (2009)

  18. Jurdzinski, T., Stachowiak, G.: Probabilistic algorithms for the wakeup problem in single-hop radio networks. In: Proceedings of the International Symposium on Algorithms and Computation (2002)

  19. Kaynar, D.K., Lynch, N., Segala, R., Vaandrager, F.: The Theory of Timed I/O Automata. Synthesis Lectures on Computer Science. Morgan Claypool Publishers, 2006. Also MIT-LCS-TR-917a

  20. Khabbazian, M., Kowalski, D., Kuhn, F., Lynch, N.: The Cost of Global Broadcast using Abstract MAC Layers. Technical report, MIT Computer Science and Artificial Intelligence Laboratory (2010)

  21. Kowalski, D., Pelc, A.: Broadcasting in undirected ad hoc radio networks. In: The Proceedings of the International Symposium on Principles of Distributed Computing (2003)

  22. Kowalski, D., Pelc, A.: Time of radio broadcasting: adaptiveness vs. Obliviousness and Randomization vs. Determinism. In: Proceedings of the Colloquium on Structural Information and Communication Complexity (2003)

  23. Kowalski D., Pelc A.: Time of deterministic broadcasting in radio networks with local knowledge. SIAM J. Comput. 33(4), 870–891 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kowalski, D.R., Pelc, A.: Deterministic broadcasting time in radio networks of unknown topology. In: The Proceedings of the Symposium on Foundations of Computer Science (2002)

  25. Kranakis E., Krizanc D., Pelc A.: Fault-tolerant broadcasting in radio networks. J. Algorithms 39(1), 47–67 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kuhn, F., Lynch, N., Newport, C.: Brief announcement: hardness of broadcasting in wireless networks with unreliable communication. In: The Proceedings of the International Symposium on Principles of Distributed Computing (2009)

  27. Kuhn, F., Lynch, N., Newport, C.: The abstract MAC layer. In: The Proceedings of the International Symposium on Distributed Computing (2009)

  28. Kuhn, F., Lynch, N., Newport, C., Oshman, R., Richa, A.: Broadcasting in Radio Networks with Unreliable Communication. Manuscript (2010)

  29. Kuhn, F., Moscibroda, T., Nieberg, T., Wattenhofer, R.: Fast deterministic distributed maximal independent set computation on growth-bounded graphs. In: The Proceedings of the International Symposium on Distributed Computing (2005)

  30. Kuhn, F., Moscibroda, T., Wattenhofer, R.: Initializing newly deployed ad hoc and sensor networks. In: The Proceedings of the International Conference on Mobile Computing and Networking (2004)

  31. Kuhn, F., Moscibroda, T., Wattenhofer, R.: Fault-tolerant clustering in ad hoc and sensor networks. In: The IEEE International Conference on Distributed Computing Systems (2006)

  32. Moscibroda, T., Wattenhofer, R.: Maximal independent sets in radio networks. In: The Proceedings of the International Symposium on Principles of Distributed Computing (2005)

  33. Moscibroda, T., Wattenhofer, R.: The complexity of connectivity in wireless networks. In: The Proceedings of Conference on Computer Communications (2006)

  34. Nelson R., Kleinrock L.: Spatial TDMA: a collision-free multihop channel access protocol. IEEE Trans. Commun. 33(9), 934–944 (1985)

    Article  MathSciNet  Google Scholar 

  35. Scheideler, C., Richa, A., Santi, P.: An O(log n) dominating set protocol for wireless ad-hoc networks under the physical interference model. In: The ACM International Symposium on Mobile Ad Hoc Networking and Computing (2008)

  36. Walter, J., Cao, G., Mohanty, M.: A k-mutual exclusion algorithm for wireless ad hoc networks. In: The Proceedings of the Workshop on Principles of Mobile Computing (2001)

  37. Walter J., Welch J., Vaidya N.: A mutual exclusion algorithm for ad hoc mobile networks. Wirel. Netw. 7(6), 585–600 (2001)

    Article  MATH  Google Scholar 

  38. Wan P.-J., Alzoubi K., Frieder O.: Distributed construction of connected dominating set in wireless ad hoc networks. Mobile Netw. Appl. 9(2), 141–149 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Calvin Newport.

Additional information

This work has been support in part by Cisco-Lehman CUNY A New MAC-Layer Paradigm for Mobile Ad-Hoc Networks, AFOSR Award Number FA9550-08-1-0159, NSF Award Number CCF-0726514, and NSF Award Number CNS-0715397.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhn, F., Lynch, N. & Newport, C. The abstract MAC layer. Distrib. Comput. 24, 187–206 (2011). https://doi.org/10.1007/s00446-010-0118-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00446-010-0118-0

Keywords