Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Concurrent imitation dynamics in congestion games

  • Published:
Distributed Computing Aims and scope Submit manuscript

Abstract

Imitating successful behavior is a natural and frequently applied approach when facing complex decision problems. In this paper, we design protocols for distributed latency minimization in atomic congestion games based on imitation. We propose to study concurrent dynamics that emerge when each agent samples another agent and possibly imitates this agent’s strategy if the anticipated latency gain is sufficiently large. Our focus is on convergence properties. We show convergence in a monotonic fashion to stable states, in which none of the agents can improve their latency by imitating others. As our main result, we show rapid convergence to approximate equilibria, in which only a small fraction of agents sustains a latency significantly above or below average. Imitation dynamics behave like an FPTAS, and the convergence time depends only logarithmically on the number of agents. Imitation processes cannot discover unused strategies, and strategies may become extinct with non-zero probability. For singleton games we show that the probability of this event occurring is negligible. Additionally, we prove that the social cost of a stable state reached by our dynamics is not much worse than an optimal state in singleton games with linear latency functions. We concentrate on the case of symmetric network congestion games, but our results do not use the network structure and continue to hold accordingly for general symmetric games. They even apply to asymmetric games when agents sample within the set of agents with the same strategy space. Finally, we discuss how the protocol can be extended such that, in the long run, dynamics converge to a pure Nash equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. We will restrict our attention to pure Nash equilibria throughout the paper.

References

  1. Ackermann, H., Fischer, S., Hoefer, M., Schöngens, M.: Distributed algorithms for QoS load balancing. Distrib. Comput. 23(5–6), 321–330 (2011)

    Article  MATH  Google Scholar 

  2. Ackermann, H., Röglin, H., Vöcking, B.: On the impact of combinatorial structure on congestion games. J. ACM 55(6), (2008)

  3. Adolphs, C., Berenbrink, P.: Distributed selfish load balancing with weights and speeds. In: Proceedings of the 31st Symposium Principles of Distributed Computing (PODC), pp. 135–144 (2012)

  4. Awerbuch, B., Azar, Y., Epstein, A.: The price of routing unsplittable flow. SIAM J. Comput. 42(1), 160–177 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Awerbuch, B., Azar, Y., Epstein, A., Mirrokni, V., Skopalik, A.: Fast convergence to nearly optimal solutions in potential games. In: Proceedings of the 9th Conference Electronic Commerce (EC), pp. 264–273 (2008)

  6. Berenbrink, P., Friedetzky, T., Goldberg, L.A., Goldberg, P., Hu, Z., Martin, R.: Distributed selfish load balancing. SIAM J. Comput. 37(4), 1163–1181 (2007)

  7. Berenbrink, P., Friedetzky, T., Hajirasouliha, I., Hu, Z.: Convergence to equilibria in distributed, selfish reallocation processes with weighted tasks. Algorithmica 62(3–4), 767–786 (2012)

  8. Berenbrink, P., Hoefer, M., Sauerwald, T.: Distributed selfish load balancing on networks. In: Proceedings of the 22nd Symposium Discrete Algorithms (SODA), pp. 1487–1497 (2011)

  9. Blum, A., Even-Dar, E., Ligett, K.: Routing without regret: on convergence to Nash equilibria of regret-minimizing algorithms in routing games. Theory Comput. 6(1), 179–199 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chien, S., Sinclair, A.: Convergence to approximate Nash equilibria in congestion games. Games Econom. Behav. 71(2), 315–327 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Christodoulou, G., Koutsoupias, E.: The price of anarchy in finite congestion games. In: Proceedings of the 37th Symposium Theory of Computing (STOC), pp. 67–73 (2005)

  12. Even-Dar, E., Kesselman, A., Mansour, Y.: Convergence time to Nash equilibria in load balancing. ACM Trans. Algorithms 3(3), (2007)

  13. Even-Dar, E., Mansour, Y.: Fast convergence of selfish rerouting. In: Proceedings of the 16th Symposium Discrete Algorithms (SODA), pp. 772–781 (2005)

  14. Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure Nash equilibria. In: Proceedings of the 36th Symposium Theory of Computing (STOC), pp. 604–612 (2004)

  15. Fanelli, A., Flammini, M., Moscardelli, L.: The speed of convergence in congestion games under best-response dynamics. ACM Trans. Algorithms 8(3), 25 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fanelli, A., Moscardelli, L.: On best response dynamics in weighted congestion games with polynomial delays. Distrib. Comput. 24(5), 245–254 (2011)

    Article  MATH  Google Scholar 

  17. Fanelli, A., Moscardelli, L., Skopalik, A.: On the impact of fair best response dynamics. In: Proceedings of the 37th International Symposium on Mathematics Foundations of Computer Science (MFCS), pp. 360–371 (2012)

  18. Fischer, S., Mähönen, P., Schöngens, M., Vöcking, B.: Load balancing for dynamic spectrum assignment with local information for secondary users. In: Proceedings of the Symposium on Dynamic Spectrum Access Networks (DySPAN) (2008)

  19. Fischer, S., Räcke, H., Vöcking, B.: Fast convergence to Wardrop equilibria by adaptive sampling mehtods. SIAM J. Comput. 39(8), 3700–3735 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fischer, S., Vöcking, B.: Adaptive routing with stale information. Theor. Comput. Sci. 410(36), 3357–3371 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fotakis, D., Kaporis, A., Spirakis, P.: Atomic congestion games: fast, myopic and concurrent. Theory Comput. Syst. 47(1), 38–49 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fotakis, D., Kontogiannis, S., Spirakis, P.: Atomic congestion games among coalitions. ACM Trans. Algorithms 4(4), (2008)

  23. Goldberg, P.: Bounds for the convergence rate of randomized local search in a multiplayer load-balancing game. In: Proceedings of the 23rd Symposium on Principles of Distributed Computing (PODC), pp. 131–140 (2004)

  24. Hagerup, T., Rüb, C.: A guided tour of Chernoff bounds. Inf. Process. Lett. 33, 305–308 (1990)

  25. Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  26. Ieong, S., McGrew, R., Nudelman, E., Shoham, Y., Sun, Q.: Fast and compact: a simple class of congestion games. In: Proceedings of the 20th Conference Artificial Intelligence (AAAI), pp. 489–494 (2005)

  27. Kleinberg, R., Piliouras, G., Tardos, É.: Multiplicative updates outperform generic no-regret learning in congestion games. In: Proceedings of the 41st Symposium Theory of Computing (STOC), pp. 533–542 (2009)

  28. Kleinberg, R., Piliouras, G., Tardos, É.: Load balancing without regret in the bulletin board model. Distrib. Comput. 24(1), 21–29 (2011)

    Article  MATH  Google Scholar 

  29. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. Comput. Sci. Rev. 3(2), 65–69 (2009)

    Article  MATH  Google Scholar 

  30. Rosenthal, R.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2, 65–67 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  31. Roughgarden, T.: Intrinsic robustness of the price of anarchy. In: Proceedings of the 41st Symposium on Theory of Computing (STOC), pp. 513–522 (2009)

  32. Skopalik, A., Vöcking, B.: Inapproximability of pure Nash equilibria. In: Proceedings of the 40th Symposium on Theory of Computing (STOC), pp. 355–364 (2008)

  33. Vöcking, B.: Selfish load balancing. In: Nisan, N., Tardos, É., Roughgarden, T., Vazirani, V. (eds.) Algorithmic Game Theory, chapter 20. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  34. Weibull, J.: Evolutionary Game Theory. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hoefer.

Additional information

An extended abstract of this work has been accepted for publication in the proceedings of the 28th Symposium on Principles of Distributed Computing (PODC 2009). This work was in part supported by DFG through Cluster of Excellence MMCI and UMIC Research Centre at RWTH Aachen University, and by an NSERC grant. Part of this work was done while the authors were at RWTH Aachen University.

Appendix

Appendix

Throughout the technical part of this paper, we apply the following two Chernoff bounds.

Fact 7

(Chernoff, see [24]) Let \(X\) be a sum of Bernoulli variables. Then, \( \mathbb {P}_{}\left[ X \ge k\cdot \mathbb {E}\left[ X\right] \right] \le \mathrm {e}^{-\mathbb {E}\left[ X\right] \,k\cdot (\ln k - 1)} \), and, for \(k\ge 4 > \mathrm {e}^{4/3}, \mathbb {P}_{}\left[ X \ge k\cdot \mathbb {E}\left[ X\right] \right] \le \mathrm {e}^{-\frac{1}{4}\,\mathbb {E}\left[ X\right] \,k\,\ln k} \). Equivalently, for \(k\ge 4\,\mathbb {E}\left[ X\right] , \mathbb {P}_{}\left[ X \ge k\right] \le \mathrm {e}^{-\frac{1}{4}\,k\,\ln (k/\mathbb {E}\left[ X\right] )} \).

The following fact yields a linear approximation of the exponential function.

Fact 8

For any \(r>0\) and \(x\in [0,r]\), it holds that \((\mathrm {e}^{x} - 1) \le x\cdot \frac{\mathrm {e}^{r}-1}{r}\).

Proof

The function \(\exp (x)-1\) is convex and it goes through the points \((0,0)\) and \((r,\mathrm {e}^{r}-1)\), as does the function \(x\cdot \frac{\mathrm {e}^{r}-1}{r}\). \(\square \)

Fact 9

It holds that

$$\begin{aligned} \sum _{k=1}^{\infty } \mathrm {e}^{-k(\ln k)}\cdot k < 2. \end{aligned}$$

Proof

We have

$$\begin{aligned} \sum _{k=1}^{\infty } \mathrm {e}^{-k(\ln k)}\cdot k \!=\! \sum _{k=1}^{\infty } \frac{1}{k^{k-1}} \!= \! 1 \!+\! \sum _{k=2}^{\infty } \frac{1}{k^{k-1}} \! < \! 1 \!+\! \sum _{k=1}^{\infty } \frac{1}{2^k} \! \le 2. \end{aligned}$$

\(\square \)

Fact 10

It holds that

$$\begin{aligned} \sum _{k=2}^{\infty } \mathrm {e}^{-k(\ln (k)-1)}\cdot k < 8. \end{aligned}$$

Proof

We have

$$\begin{aligned}&\sum _{k=2}^{\infty } \mathrm {e}^{-k(\ln (k)-1)}\cdot k = \sum _{k=1}^{\infty } \mathrm {e}^{} \cdot \left( \frac{\mathrm {e}^{}}{k+1}\right) ^k \, = \, \sum _{k=1}^{4} \mathrm {e}^{} \cdot \left( \frac{\mathrm {e}^{}}{k+1}\right) ^k \\&\qquad \qquad \quad \quad + \sum _{k=5}^{\infty } \mathrm {e}^{} \cdot \left( \frac{\mathrm {e}^{}}{k+1}\right) ^k < 7.1 + \mathrm {e}^{} \cdot \sum _{k=5}^{\infty } \frac{1}{2^k}\, < \, 8. \end{aligned}$$

\(\square \)

Fact 11

For every \(c \in ]0,1[\) it holds

$$\begin{aligned} \sum _{k=0}^{\infty } c^k&= \frac{c}{1-c} \\ \sum _{k=l}^{\infty } c^k&= \frac{c^l}{1-c} \\ \end{aligned}$$

Fact 12

(Jensen’s Inequality) Let \(f :\mathbb {R}\rightarrow \mathbb {R}\) be a convex function, and let \(a_1,\ldots ,a_k,x_1,\ldots ,x_k \in \mathbb {R}\). Then

$$\begin{aligned} f \left( \frac{\sum _{i=1}^k a_i x_i}{\sum _{i=1}^k a_i} \right) \le \frac{\sum _{i=1}^k a_i f(x_i)}{\sum _{i=1}^k a_i}. \end{aligned}$$

If \(f(x) = x^2\), then

$$\begin{aligned}&\left( \frac{\sum _{i=1}^k a_i x_i}{\sum _{i=1}^k a_i} \right) ^2 \le \frac{\sum _{i=1}^k a_i (x_i)^2}{\sum _{i=1}^k a_i} \\&\quad \Leftrightarrow \frac{1}{\sum _{i=1}^k a_i} \cdot \left( \sum _{i=1}^k a_i x_i \right) ^2 \le \sum _{i=1}^k a_i f(x_i). \end{aligned}$$

Lemma 7

Let \(X_0,X_1,\ldots \) denote a sequence of non-negative random variables and assume that for all \(i\ge 0\)

$$\begin{aligned} \mathbb {E}\left[ X_i \mid X_{i-1}=x_{i-1}\right] \le x_{i-1} - 1 \end{aligned}$$

and let \(\tau \) denote the first time \(t\) such that \(X_t=0\). Then,

$$\begin{aligned} \mathbb {E}\left[ \tau \mid X_0=x_0\right] \le x_0. \end{aligned}$$

The proof follows, e.g., from standard martingale arguments in combination with the optional stopping theorem and is omitted here.

Lemma 8

Let \(X_0,X_1,\ldots \) denote a sequence of non-negative random variables and assume that for all \(i\ge 0\mathbb {E}\left[ X_i \mid X_{i-1} = x_{i-1}\right] \le x_{i-1} \cdot \alpha \) for some constant \(\alpha \in (0,1)\). Furthermore, fix some constant \(x^*\in (0,x_0]\) and let \(\tau \) be the random variable that describes the smallest \(t\) such that \(X_t \le x^*\). Then,

$$\begin{aligned} \mathbb {E}\left[ \tau \mid X_0=x_0\right] \le \frac{4}{1-\alpha } \cdot \ln \left( \frac{2x_0}{x^*}\right) . \end{aligned}$$

Proof

Let us define \(\gamma = \frac{1}{1-\alpha }\) and an auxiliary random variable \(Y^t\) by \(Y^0:= X^{0}\), and for any round \(t \ge 1\),

$$\begin{aligned} Y^{t}&= \left\{ \begin{array}{ll} X^{t} &{} \mathrm{if} X^t > x^* \\ 0 &{} \mathrm{otherwise}. \end{array}\right. \end{aligned}$$

Then, for any \(t \ge 1\), it follows

$$\begin{aligned} \mathbb {E}\left[ Y^t \mid X^{t-1}=x \right] \le \alpha x. \end{aligned}$$

We have for \(\kappa = \gamma \cdot (\ln (x^0) - \ln (x^*/2))\),

$$\begin{aligned} \mathbb {E}\left[ Y^t \right]&= \sum _x \mathbb {E}\left[ Y^{t} \mid X^{t-1}=x \right] \cdot \mathbb {P}_{}\left[ X^{t-1}=x \right] \\&\le \sum _x \alpha \cdot Y^{t-1} \cdot \mathbb {P}_{}\left[ X^{t-1}=x \right] \\&\le \alpha ^{\tau } \cdot Y^{0} \le x^*/2. \end{aligned}$$

Hence by Markov’s inequality,

$$\begin{aligned} \mathbb {P}_{}\left[ Y^{\kappa } \ge x^* \right] \le \frac{1}{2}. \end{aligned}$$
(9)

We consider two cases.

Case 1: For all time steps \(t \in [0,\ldots ,\kappa ], Y^{t} = X^{t}\). Then, as seen above \(X^{\kappa } \le x^*\) with probability at least 1/2.

Case 2: There exists a step \(t \in [1,\ldots ,\kappa ]\) such that \(Y^{t} \ne X^{t}\). Let \(t\) be the smallest time step with that property. Hence, \(Y^{t} \ne X^{t}\), but \(Y^{t-1} = X^{t-1}\). If \(Y^{t-1}=0\), then \(X^{t-1} = 0\). If \(Y^{t-1} \ne 0\), then by definition of \(Y^{t}\),

$$\begin{aligned} \left( Y^{t} \ne X^{t} \right) \bigwedge \left( Y^{t-1} \ne 0 \right) \Rightarrow X^t \le x^*. \end{aligned}$$

In all cases we have shown that with probability at least 1/2, there exists a step \(t \in [0,\kappa ]\) so that \(X^{t} \le x^*\). If such a step does not exist, we simply repeat the analysis and consider the next \(\kappa \) steps. The probability that we do not observe a step as desired decreases exponentially in the number of restarts. In expectation, we need only \(\sum _{k=1}^{\infty } k/2^{k-1} = 4\) phases of \(\kappa \) steps to observe a step as desired. Thus, the expected number of steps is at most \(\tau = 4\kappa \). This completes the proof of the lemma. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ackermann, H., Berenbrink, P., Fischer, S. et al. Concurrent imitation dynamics in congestion games. Distrib. Comput. 29, 105–125 (2016). https://doi.org/10.1007/s00446-014-0223-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00446-014-0223-6

Keywords