Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

An optimized repeated-fed-batch fermentation process for the synthesis of dihydroxyacetone (DHA) from glycerol utilizing Gluconobacter oxydans is presented. Cleaning, sterilization, and inoculation procedures could be reduced significantly compared to the conventional fed-batch process. A stringent requirement was that the product concentration was kept below a critical threshold level at all times in order to avoid irreversible product inhibition of the cells. On the basis of experimentally validated model calculations, a threshold value of about 60 kg m-3 DHA was obtained. The innovative bioreactor system consisted of a stirred tank reactor combined with a packed trickle-bed column. In the packed column, active cells could be retained by in situ immobilization on a hydrophilized Ralu-ring carrier material. Within 17 days, the productivity of the process could be increased by 75% to about 2.8 kg m-3 h-1. However, it was observed that the maximum achievable productivity had not been reached yet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

K O :

Monod half saturation constant of dissolved oxygen (kg m-3)

K S :

Monod half saturation constant of substrate glycerol (kg m-3)

O :

Dissolved oxygen concentration (kg m-3)

P :

Product concentration (kg m-3)

P crit :

Critical product concentration constant (kg m-3)

S :

Substrate concentration (kg m-3)

t :

Time (s)

X :

Biomass concentration (dry weight) (kg m-3)

Y P/S :

Yield coefficient of product from substrate

Y X/S :

Yield coefficient of biomass from substrate

α :

Growth dependent specific production rate constant (kg m-3)

β :

Growth independent specific production rate constant (s-1)

μ :

Specific growth rate (s-1)

μ max :

Maximum specific growth rate constant (s-1)

References

  1. Sievers M, Ludwig W, Teuber M (1994) Phylogenetic positioning of Acetobacter, Gluconobacter, Rhodopila and Acidiphilium species as a branch of acidophilic bacteria in the α-subclass of proteobacteria based on 16S ribosomal DNA sequences. Syst Appl Microbiol 17:189–196

    CAS  Google Scholar 

  2. Yamada S, Nabe K, Izuo N, Wada M, Chibata I (1979) Fermentative production of dihydroxyacetone by Acetobacter suboxydans ATTC 621. J Ferment Technol 57:215–220

    CAS  Google Scholar 

  3. Izuo N, Nabe K, Yamada S, Chibata I (1980): Production of dihydroxyacetone by continuous cultivation of Acetobacter suboxydans. J Ferment Technol 58:221–226

    CAS  Google Scholar 

  4. Ohrem HL, Westmeier F (1998) Microbial process for the preparation of dihydroxyacetone with recycling of biomass. US Patent 5770411

  5. Nanba A, Kimura K, Nagai S (1985) Vinegar production by Acetobacter rancens cells fixed on a hollow fiber module. J Ferment Technol 63:175–179

    CAS  Google Scholar 

  6. Park YS, Ohtake H, Toda K, Fukaya M, Okumura H, Kawamura Y (1989) Acetic acid production using a fermentor equipped with a hollow fiber module. Biotechnol Bioeng 33:918–923

    CAS  Google Scholar 

  7. Freeman A, Lilly MD (1998) Effect of processing parameters on the feasibility and operational stability of immobilized microbial cells. Enzyme Microb Tech 23:335–345

    Article  CAS  Google Scholar 

  8. Sattler K, Babel W, Wünsche L (1990) Essigsäurebakterien – eine Gruppe von Mikroorganismen mit bedeutender technologischer Tradition und Perspektive. Übersicht über einige neuere Aspekte. ZBL Mikrobiol 145:555–562

    Google Scholar 

  9. Mantha D, Aslam Basha Z, Panda T (1998) Optimization of medium composition by response methodology for the production of tartaric acid by Gluconobacter oxydans. Bioprocess Eng 19:285–288

    Article  CAS  Google Scholar 

  10. Ohrem HL (1994) Reaktionstechnische Untersuchung der Glycerinoxidation mit Gluconobacter oxydans zur Entwicklung eines kontinuierlichen Fermentationsverfahrens. Dissertation, Aachen University of Technology, Germany

  11. Ohrem HL, Voß H (1995) Kinetics of polyol oxidation with Gluconobacter oxydans. Biotechnol Lett 17:1195–1200

    CAS  Google Scholar 

  12. Wethmar M (1998) Kinetik und Energetik der Glycerinumsetzung durch Gluconobacter oxydans. Dissertation, Braunschweig University of Technology, Germany

  13. Hekmat D (2002) Reaktionstechnik von instationären biologischen Prozessen. Shaker Verlag, Aachen, Germany

  14. Luedeking R, Piret EL (1959) A kinetic study of the lactic acid fermentation: batch process at controlled pH. J Biochem Microbiol 1:393–412

    CAS  Google Scholar 

Download references

Acknowledgements

The financial support of this work by the Volkswagen-Stiftung, Hannover, Germany, by grant No. I/72433, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Hekmat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hekmat, D., Bauer, R. & Fricke, J. Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans . Bioprocess Biosyst Eng 26, 109–116 (2003). https://doi.org/10.1007/s00449-003-0338-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-003-0338-9

Keywords