Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Minimum Cost Source Location Problems with Flow Requirements

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

In this paper, we consider source location problems and their generalizations with three connectivity requirements (arc-connectivity requirements λ and two kinds of vertex-connectivity requirements κ and \(\hat{\kappa}\) ), where the source location problems are to find a minimum-cost set SV in a given graph G=(V,A) with a capacity function u:A→ℝ+ such that for each vertex vV, the connectivity from S to v (resp., from v to S) is at least a given demand d (v) (resp., d +(v)). We show that the source location problem with edge-connectivity requirements in undirected networks is strongly NP-hard, which solves an open problem posed by Arata et al. (J. Algorithms 42: 54–68, 2002). Moreover, we show that the source location problems with three connectivity requirements are inapproximable within a ratio of cln D for some constant c, unless every problem in NP has an O(N log log N)-time deterministic algorithm. Here D denotes the sum of given demands. We also devise (1+ln D)-approximation algorithms for all the extended source location problems if we have the integral capacity and demand functions. By the inapproximable results above, this implies that all the source location problems are Θ(ln ∑vV(d +(v)+d (v)))-approximable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreev, K., Garrod, C., Maggs, B.: Simultaneous source location. SCS Technical Report CMU-CS-03-162, Carnegie Mellon University, Pittsburgh

  2. Arata, K., Iwata, S., Makino, K., Fujishige, S.: Locating sources to meet flow demands in undirected networks. J. Algorithms 42, 54–68 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bárász, M., Becker, J., Frank, A.: An algorithm for source location in directed graphs. Oper. Res. Lett. 33, 221–230 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45, 634–652 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fujito, T.: Approximation algorithms for submodular set cover with applications. IEICE Trans. E83-D, 480–487 (2000)

    Google Scholar 

  6. Goel, A., Estrin, D.: Simultaneous optimization for concave costs: Single sink aggregation or single source buy-at-bulk. In: Proceedings of 14th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 499–505 (2003)

  7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  8. Ishii, T., Fujita, H., Nagamochi, H.: Source location problem with local 3-vertex-connectivity requirements. In: Proceedings of 3rd Hungarian-Japanese Symposium on Discrete Mathematics and Its Applications, pp. 368–377 (2003)

  9. Ishii, T., Fujita, H., Nagamochi, H.: Minimum cost source location problem with local 3-vertex-connectivity requirements. In: Computing Theory: The Australian Theory Symposium, pp. 97–105 (2005)

  10. Ito, H., Ito, M., Itatsu, Y., Uehara, H., Yokoyama, M.: Source location problems considering vertex-connectivity and edge-connectivity simultaneously. Networks 40, 63–70 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ito, H., Makino, K., Arata, K., Honami, S., Itatsu, Y., Fujishige, S.: Source location problem with flow requirements in directed networks. Optim. Methods Softw. 18, 427–435 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Labbe, M., Peeters, D., Thisse, J.-F.: Location on networks. In: Ball, M.O., et al. (eds.) Handbooks in OR & MS, vol. 8, pp. 551–624. North-Holland, Amsterdam (1995)

    Google Scholar 

  13. Lund, C., Yannakakis, M.: On the hardness of approximating minimization problems. J. ACM 41, 960–981 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Nagamochi, H., Ishii, T., Ito, H.: Minimum cost source location problem with vertex-connectivity requirements in digraphs. Inform. Process. Lett. 80, 287–294 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Sakashita, M., Makino, K., Fujishige, S.: Minimizing a monotone concave function with laminar covering constraints. In: ISAAC 2005. LNCS, vol. 3827, pp. 71–81 (2005), Discrete Appl. Math. (2007, in press)

  16. Sakashita, M., Makino, K., Fujishige, S.: Minimum cost source location problems with flow requirements. In: LATIN 2006. LNCS, vol. 3887, pp. 769–780 (2006)

  17. Tamura, H., Sengoku, M., Shinoda, S., Abe, T.: Location problems on undirected flow networks. IEICE Trans. E73, 1989–1993 (1990)

    Google Scholar 

  18. Tamura, H., Sengoku, M., Shinoda, S., Abe, T.: Some covering problems in location theory on flow networks. IEICE Trans. E75-A, 678–683 (1992)

    Google Scholar 

  19. Tamura, H., Sugawara, H., Sengoku, M., Shinoda, S.: Plural cover problem on undirected flow networks. IEICE Trans. J81-A, 863–869 (1998) (in Japanese)

    Google Scholar 

  20. van den Heuvel, J., Johnson, M.: Transversals of subtree hypergraphs and the source location problem in digraphs. CDAM Research Report, LSE-CDAM-2004-10, London School of Economics

  21. Wolsey, L.A.: An analysis of the greedy algorithm for the submodular set covering problem. Combinatorica 2, 385–393 (1982)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhisa Makino.

Additional information

An extended abstract of this paper appeared in Sakashita et al. (Proceedings of LATIN 2006, Chile, LNCS, vol. 3887, pp. 769–780, March 2006).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakashita, M., Makino, K. & Fujishige, S. Minimum Cost Source Location Problems with Flow Requirements. Algorithmica 50, 555–583 (2008). https://doi.org/10.1007/s00453-007-9012-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-007-9012-y

Keywords