Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Computing median and antimedian sets in median graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

The median (antimedian) set of a profile π=(u 1,…,u k ) of vertices of a graph G is the set of vertices x that minimize (maximize) the remoteness ∑ i d(x,u i ). Two algorithms for median graphs G of complexity O(n idim(G)) are designed, where n is the order and idim(G) the isometric dimension of G. The first algorithm computes median sets of profiles and will be in practice often faster than the other algorithm which in addition computes antimedian sets and remoteness functions and works in all partial cubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balakrishnan, K.: Algorithms for median computation in median graphs and their generalizations using consensus strategies. Ph.D. Thesis, University of Kerala (2006)

  2. Bandelt, H.-J.: Retracts of hypercubes. J. Graph Theory 8, 501–510 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bandelt, H.-J., Barthélemy, J.-P.: Medians in median graphs. Discrete Appl. Math. 8, 131–142 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bandelt, H.-J., Chepoi, V.: Graphs with connected medians. SIAM J. Discrete Math. 15, 268–282 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bandelt, H.-J., Mulder, H.M., Wilkeit, E.: Quasi-median graphs and algebras. J. Graph Theory 18, 681–703 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Barthélemy, J.-P., Monjardet, B.: The median procedure in cluster analysis and social choice theory. Math. Social Sci. 1, 235–267 (1980–1981)

    Article  Google Scholar 

  7. Bielak, H., Syslo, M.M.: Peripheral vertices in graphs. Stud. Sci. Math. Hung. 18, 269–275 (1983)

    MATH  MathSciNet  Google Scholar 

  8. Brešar, B., Imrich, W., Klavžar, S.: Fast recognition algorithms for classes of partial cubes. Discrete Appl. Math. 131, 51–61 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cappanera, P., Gallo, G., Maffioli, F.: Discrete facility location and routing of obnoxious activities. Discrete Appl. Math. 133, 3–28 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J. Comput. 14, 210–223 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  11. Feder, T.: Stable networks and product graphs. Mem. Am. Math. Soc. 116, 555 (1995)

    MathSciNet  Google Scholar 

  12. Hagauer, J., Imrich, W., Klavžar, S.: Recognizing median graphs in subquadratic time. Theor. Comput. Sci. 215, 123–136 (1999)

    Article  MATH  Google Scholar 

  13. Imrich, W., Klavžar, S.: Recognizing graphs of acyclic cubical complexes. Discrete Appl. Math. 95, 321–330 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Imrich, W., Klavžar, S.: Product Graphs: Structure and Recognition. Wiley–Interscience, New York (2000)

    MATH  Google Scholar 

  15. Imrich, W., Klavžar, S., Mulder, H.M.: Median graphs and triangle-free graphs. SIAM J. Discrete Math. 12, 111–118 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Klavžar, S., Mulder, H.M.: Median graphs: characterizations, location theory and related structures. J. Comb. Math. Comb. Comput. 30, 103–127 (1999)

    MATH  Google Scholar 

  17. Leclerc, B.: The median procedure in the semilattice of orders. Discrete Appl. Math. 127, 285–302 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. McMorris, F.R., Mulder, H.M., Roberts, F.R.: The median procedure on median graphs. Discrete Appl. Math. 84, 165–181 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mulder, H.M.: The Interval Function of a Graph. Math. Centre Tracts, vol. 132. Mathematisch Centrum, Amsterdam (1980)

    MATH  Google Scholar 

  20. Tamir, A.: Locating two obnoxious facilities using the weighted maximin criterion. Oper. Res. Lett. 34, 97–105 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Taranenko, A., Vesel, A.: Fast recognition of Fibonacci cubes. Algorithmica 49, 81–93 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ting, S.S.: A linear-time algorithm for maxisum facility location on tree networks. Transp. Sci. 18, 76–84 (1984)

    Article  MathSciNet  Google Scholar 

  23. Wilkeit, E.: The retracts of Hamming graphs. Discrete Math. 102, 197–218 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  24. Zmazek, B., Žerovnik, J.: The obnoxious center problem on weighted cactus graphs. Discrete Appl. Math. 136, 377–386 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandi Klavžar.

Additional information

Work supported by the Ministry of Science of Slovenia and by the Ministry of Science and Technology of India under the bilateral India-Slovenia grants BI-IN/06-07-002 and DST/INT/SLOV-P-03/05, respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balakrishnan, K., Brešar, B., Changat, M. et al. Computing median and antimedian sets in median graphs. Algorithmica 57, 207–216 (2010). https://doi.org/10.1007/s00453-008-9200-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-008-9200-4

Keywords