Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Colored Simultaneous Geometric Embeddings and Universal Pointsets

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Universal pointsets can be used for visualizing multiple relationships on the same set of objects or for visualizing dynamic graph processes. In simultaneous geometric embeddings, the same point in the plane is used to represent the same object as a way to preserve the viewer’s mental map. In colored simultaneous embeddings this restriction is relaxed, by allowing a given object to map to a subset of points in the plane. Specifically, consider a set of graphs on the same set of n vertices partitioned into k colors. Finding a corresponding set of k-colored points in the plane such that each vertex is mapped to a point of the same color so as to allow a straight-line plane drawing of each graph is the problem of colored simultaneous geometric embedding.

For n-vertex paths, we show that there exist universal pointsets of size n, colored with two or three colors. We use this result to construct colored simultaneous geometric embeddings for a 2-colored tree together with any number of 2-colored paths, and more generally, a 2-colored outerplanar graph together with any number of 2-colored paths. For n-vertex trees, we construct small near-universal pointsets for 3-colored caterpillars of size n, 3-colored radius-2 stars of size n+3, and 2-colored spiders of size n. For n-vertex outerplanar graphs, we show that these same universal pointsets also suffice for 3-colored K 3-caterpillars, 3-colored K 3-stars, and 2-colored fans, respectively. We also present several negative results, showing that there exist a 2-colored planar graph and pseudo-forest, three 3-colored outerplanar graphs, four 4-colored pseudo-forests, three 5-colored pseudo-forests, five 5-colored paths, two 6-colored biconnected outerplanar graphs, three 6-colored cycles, four 6-colored paths, and three 9-colored paths that cannot be simultaneously embedded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abellanas, M., García, J., Hernández, G., Noy, M., Ramos, P.: Bipartite embeddings of trees in the plane. Discrete Appl. Math. 93(2–3), 141–148 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Biedl, T.C.: Drawing planar partitions I: LL-drawings and LH-drawings. In: Proceedings of the Fourteenth Annual Symposium on Computational Geometry, SoCG 1998, pp. 287–296. ACM Press, New York (1998)

    Chapter  Google Scholar 

  3. Biedl, T.C., Kaufmann, M., Mutzel, P.: Drawing planar partitions. II. HH-drawings. In: Graph-Theoretic Concepts in Computer Science, Smolenice Castle, 1998. LNCS, vol. 1517, pp. 124–136. Springer, Berlin (1998)

    Chapter  Google Scholar 

  4. Bose, P.: On embedding an outer-planar graph in a point set. Comput. Geom.: Theory Appl. 23(3), 303–312 (2002)

    MATH  Google Scholar 

  5. Brass, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov, S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous graph embedding. Comput. Geom.: Theory Appl. 36(2), 117–130 (2007)

    MATH  MathSciNet  Google Scholar 

  6. Chrobak, M., Kant, G.: Convex grid drawings of 3-connected planar graphs. Int. J. Comput. Geom. Appl. 7(3), 211–223 (1997)

    Article  MathSciNet  Google Scholar 

  7. de Fraysseix, H., Pach, J., Pollack, R.: Small sets supporting Fary embeddings of planar graphs. In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing, STOC 1988, pp. 426–433 (1988)

  8. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Di Battista, G., Tamassia, R.: Algorithms for plane representation of acyclic digraphs. Theor. Comput. Sci. 61(23), 175–198 (1988)

    Article  MATH  Google Scholar 

  10. Dux, B., Iyer, A., Debray, S., Forrester, D., Kobourov, S.G.: Visualizing the behavior of dynamically modifiable code. In: 13th Workshop on Program Comprehension, pp. 337–340 (2005)

  11. Erten, C., Kobourov, S.G.: Simultaneous embedding of planar graphs with few bends. J. Graph Algorithms Appl. 9(3), 347–364 (2005)

    MATH  MathSciNet  Google Scholar 

  12. Estrella-Balderrama, A., Fowler, J.J., Kobourov, S.G.: Characterization of unlabeled level planar trees. Comput. Geom.: Theory Appl. 42(7), 704–721 (2009)

    MATH  MathSciNet  Google Scholar 

  13. Fowler, J.J., Kobourov, S.G.: Minimum level nonplanar patterns for trees. In: 15th Symposium on Graph Drawing, GD 2007. LNCS, vol. 4875, pp. 69–75. Springer, Berlin (2008)

    Google Scholar 

  14. Fowler, J.J., Jünger, M., Kobourov, S.G., Schulz, M.: Characterizations of restricted pairs of planar graphs allowing simultaneous embedding with fixed edges. In: 34th International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2008. LNCS, vol. 5344, pp. 146–158. Springer, Berlin (2008)

    Chapter  Google Scholar 

  15. Frati, F.: Embedding graphs simultaneously with fixed edges. In: 14th Symposium on Graph Drawing, GD 2006. LNCS, vol. 4372, pp. 108–113. Springer, Berlin (2007)

    Google Scholar 

  16. Frati, F., Kaufmann, M., Kobourov, S.G.: Constrained simultaneous and near-simultaneous embeddings. In: 15th Symposium on Graph Drawing, GD 2007. LNCS, vol. 4875, pp. 268–279. Springer, Berlin (2008)

    Google Scholar 

  17. Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation with vertices at specified points. Am. Math. Mon. 98, 165–166 (1991)

    Article  MathSciNet  Google Scholar 

  18. Healy, P., Kuusik, A., Leipert, S.: Characterization of level non-planar graphs by minimal patterns. In: 6th Computing and Combinatorics Conference, COCOON 2000, pp. 74–84 (2000)

  19. Kaufmann, M., Vrto, I., Geyer, M.: Two trees which are self-intersecting when drawn simultaneously. In: 13th Symposium on Graph Drawing, GD 2005. LNCS, vol. 3843, pp. 201–210. Springer, Berlin (2006)

    Google Scholar 

  20. Kuratowski, C.: Sur les problèmes des courbes gauches en Topologie. Fundam. Math. 15, 271–283 (1930)

    MATH  Google Scholar 

  21. Rosenstiehl, P., Tarjan, R.E.: Rectilinear planar layouts and bipolar orientations of planar graphs. Discrete Comput. Geom. 1(4), 343–353 (1986)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Joseph Fowler.

Additional information

Work on this paper began at the BICI Workshop on Graph Drawing, held in Bertinoro, Italy in March 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandes, U., Erten, C., Estrella-Balderrama, A. et al. Colored Simultaneous Geometric Embeddings and Universal Pointsets. Algorithmica 60, 569–592 (2011). https://doi.org/10.1007/s00453-010-9433-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-010-9433-x

Keywords