Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Stackelberg Network Pricing Games

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We study a multi-player one-round game termed Stackelberg Network Pricing Game, in which a leader can set prices for a subset of m priceable edges in a graph. The other edges have a fixed cost. Based on the leader’s decision one or more followers optimize a polynomial-time solvable combinatorial minimization problem and choose a minimum cost solution satisfying their requirements based on the fixed costs and the leader’s prices. The leader receives as revenue the total amount of prices paid by the followers for priceable edges in their solutions. Our model extends several known pricing problems, including single-minded and unit-demand pricing, as well as Stackelberg pricing for certain follower problems like shortest path or minimum spanning tree. Our first main result is a tight analysis of a single-price algorithm for the single follower game, which provides a (1+ε)log m-approximation. This can be extended to provide a (1+ε)(log k+log m)-approximation for the general problem and k followers. The problem is also shown to be hard to approximate within \(\mathcal{O}(\log^{\varepsilon}k + \log^{\varepsilon}m)\) for some ε>0. If followers have demands, the single-price algorithm provides an \(\mathcal{O}(m^{2})\)-approximation, and the problem is hard to approximate within \(\mathcal{O}(m^{\epsilon})\) for some ε>0. Our second main result is a polynomial time algorithm for revenue maximization in the special case of Stackelberg bipartite vertex-cover, which is based on non-trivial max-flow and LP-duality techniques. This approach can be extended to provide constant-factor approximations for any constant number of followers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aggarwal, G., Feder, T., Motwani, R., Zhu, A.: Algorithms for multi-product pricing. In: Proc. of 31st ICALP (2004)

    Google Scholar 

  2. Balcan, M., Blum, A.: Approximation algorithms and online mechanisms for item pricing. In: Proc. of 7th EC (2006)

    Google Scholar 

  3. Balcan, M., Blum, A., Hartline, J., Mansour, Y.: Mechanism design via machine learning. In: Proc. of 46th FOCS (2005)

    Google Scholar 

  4. Balcan, M., Blum, A., Mansour, Y.: Item pricing for revenue maximization. In: Proc. of 9th EC (2008)

    Google Scholar 

  5. Biló, D., Gualá, L., Proietti, G., Widmayer, P.: Computational aspects of a 2-player Stackelberg shortest paths tree game. In: Proc. 4th WINE (2008)

    Google Scholar 

  6. Bouhtou, M., Grigoriev, A., van Hoesel, S., van der Kraaij, A., Uetz, M.: Pricing bridges to cross a river. Nav. Res. Logist. 54(4), 411–420 (2007)

    Article  MATH  Google Scholar 

  7. Briest, P.: Uniform budgets and the envy-free pricing problem. In: Proc. of 35th ICALP (2008)

    Google Scholar 

  8. Briest, P., Khanna, S.: Improved hardness of approximation for Stackelberg shortest-path pricing. (2009). arXiv:0910.0110

  9. Briest, P., Krysta, P.: Single-minded unlimited-supply pricing on sparse instances. In: Proc. of 17th SODA (2006)

    Google Scholar 

  10. Briest, P., Krysta, P.: Buying cheap is expensive: Hardness of non-parametric multi-product pricing. In: Proc. of 18th SODA (2007)

    Google Scholar 

  11. Briest, P., Hoefer, M., Krysta, P.: Stackelberg network pricing games. In: Proc. of 25th STACS (2008)

    Google Scholar 

  12. Briest, P., Gualá, L., Hoefer, M., Ventre, C.: On Stackelberg pricing with computationally bounded consumers. In: Proc. of 5th WINE (2009)

    Google Scholar 

  13. Cardinal, J., Demaine, E., Fiorini, S., Joret, G., Langerman, S., Newman, I., Weimann, O.: The Stackelberg minimum spanning tree game. In: Proc. of 10th WADS (2007)

    Google Scholar 

  14. Cardinal, J., Demaine, E., Fiorini, S., Joret, G., Langerman, S., Newman, I., Weimann, O.: The Stackelberg minimum spanning tree game on planar and bounded-treewidth graphs. In: Proc. of 5th WINE (2009)

    Google Scholar 

  15. Chawla, S., Hartline, J., Kleinberg, R.: Algorithmic pricing via virtual valuations. In: Proc. of 8th EC (2007)

    Google Scholar 

  16. Cramton, P., Shoham, Y., Steinberg, R. (eds.): Combinatorial Auctions. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  17. Demaine, E.D., Feige, U., Hajiaghayi, M.T., Salavatipour, M.R.: Combination can be hard: Approximability of the unique coverage problem. SIAM J. Comput. 38(4), 1464–1483 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fleischer, L., Jain, K., Mahdian, M.: Tolls for heterogeneous selfish users in multicommodity networks and generalized congestion games. In: Proc. of 45th FOCS (2004)

    Google Scholar 

  19. Glynn, P., Rusmevichientong, P., Van Roy, B.: A non-parametric approach to multi-product pricing. Oper. Res., 54(1), 82–98 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Guruswami, V., Hartline, J.D., Karlin, A.R., Kempe, D., Kenyon, C., McSherry, F.: On profit-maximizing envy-free pricing. In: Proc. of 16th SODA (2005)

    Google Scholar 

  21. Hartline, J., Koltun, V.: Near-optimal pricing in near-linear time. In: Proc. of 8th WADS (2005)

    Google Scholar 

  22. Karakostas, G., Kolliopoulos, S.: Edge pricing of multicommodity networks for heterogeneous users. In: Proc. of 45th FOCS (2004)

    Google Scholar 

  23. Karakostas, G., Kolliopoulos, S.: Stackelberg strategies for selfish routing in general multicommodity networks. Algorithmica 53(1), 132–153 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Labbé, M., Marcotte, P., Savard, G.: A bilevel model of taxation and its application to optimal highway pricing. Manag. Sci. 44(12), 1608–1622 (1998)

    Article  MATH  Google Scholar 

  25. Nisan, N., Ronen, A.: Algorithmic mechanism design. In: Proc. of 31st STOC (1999)

    Google Scholar 

  26. Roch, S., Savard, G., Marcotte, P.: An approximation algorithm for Stackelberg network pricing. Networks 46(1), 57–67 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Roughgarden, T.: Stackelberg scheduling strategies. SIAM J. Comput. 33(2), 332–350 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  28. Swamy, C.: The effectiveness of Stackelberg strategies and tolls for network congestion games. In: Proc. of 18th SODA (2007)

    Google Scholar 

  29. van Hoesel, S.: An overview of Stackelberg pricing in networks. Research Memoranda 042, METEOR, Maastricht (2006)

  30. von Stackelberg, H.: Marktform und Gleichgewicht (Market and Equilibrium). Springer, Vienna (1934)

    Google Scholar 

  31. Yang, H., Huang, H.-J.: The multi-class, multi-criteria traffic network equilibrium and systems optimum problem. Transp. Res., Part B, Methodol. 38, 1–15 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hoefer.

Additional information

An extended abstract of this paper has appeared in STACS 2008 [11].

M. Hoefer is supported by DFG Graduiertenkolleg “AlgoSyn”.

P. Krysta is supported by DFG grant Kr 2332/1-2 within Emmy Noether program.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briest, P., Hoefer, M. & Krysta, P. Stackelberg Network Pricing Games. Algorithmica 62, 733–753 (2012). https://doi.org/10.1007/s00453-010-9480-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-010-9480-3

Keywords