Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Adaptive Drift Analysis

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We show that, for any c>0, the (1+1) evolutionary algorithm using an arbitrary mutation rate p n =c/n finds the optimum of a linear objective function over bit strings of length n in expected time Θ(nlogn). Previously, this was only known for c≤1. Since previous work also shows that universal drift functions cannot exist for c larger than a certain constant, we instead define drift functions which depend crucially on the relevant objective functions (and also on c itself). Using these carefully-constructed drift functions, we prove that the expected optimisation time is Θ(nlogn). By giving an alternative proof of the multiplicative drift theorem, we also show that our optimisation-time bound holds with high probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bäck, T.: Optimal mutation rates in genetic search. In: Forrest, S. (ed.) International Conference on Genetic Algorithms (ICGA), pp. 2–8. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  2. Baswana, S., Biswas, S., Doerr, B., Friedrich, T., Kurur, P.P., Neumann, F.: Computing single source shortest paths using single-objective fitness. In: FOGA ’09: Proceedings of the Tenth ACM SIGEVO Workshop on Foundations of Genetic Algorithms, pp. 59–66. ACM, New York (2009)

    Chapter  Google Scholar 

  3. Doerr, B., Goldberg, L.: Adaptive drift analysis. In: Schaefer, R., Cotta, C., Kolodziej, J., Rudolph, G. (eds.) Parallel Problem Solving from Nature—PPSN XI. Lecture Notes in Computer Science, vol. 6238, pp. 32–41. Springer, Berlin (2011)

    Chapter  Google Scholar 

  4. Doerr, B., Goldberg, L.: Drift analysis with tail bounds. In: Schaefer, R., Cotta, C., Kolodziej, J., Rudolph, G. (eds.) Parallel Problem Solving from Nature—PPSN XI. Lecture Notes in Computer Science, vol. 6238, pp. 174–183. Springer, Berlin (2011)

    Chapter  Google Scholar 

  5. Doerr, B., Jansen, T., Sudholt, D., Winzen, C., Zarges, C.: Optimizing monotone functions can be difficult. In: Schaefer, R., Cotta, C., Kolodziej, J., Rudolph, G. (eds.) Parallel Problem Solving from Nature—PPSN XI. Lecture Notes in Computer Science, vol. 6238, pp. 42–51. Springer, Berlin (2010)

    Chapter  Google Scholar 

  6. Doerr, B., Johannsen, D., Winzen, C.: Drift analysis and linear functions revisited. In: Congress on Evolutionary Computation (CEC-2010), pp. 1–8. IEEE Press, New York (2010)

    Google Scholar 

  7. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. In: Genetic and Evolutionary Computation Conference (GECCO-2010), pp. 1449–1456. ACM, New York (2010)

    Google Scholar 

  8. Droste, S., Jansen, T., Wegener, I.: A rigorous complexity analysis of the (1+1) evolutionary algorithm for separable functions with boolean inputs. Evol. Comput. 6(2), 185–196 (1998)

    Article  Google Scholar 

  9. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theor. Comput. Sci. 276(1–2), 51–81 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dyer, M., Greenhill, C.: Random walks on combinatorial objects. In: Surveys in Combinatorics 1999, pp. 101–136. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  11. Giel, O., Lehre, P.K.: On the effect of populations in evolutionary multi-objective optimization. In: GECCO ’06: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 651–658. ACM, New York (2006)

    Chapter  Google Scholar 

  12. Giel, O., Wegener, I.: Evolutionary algorithms and the maximum matching problem. In: STACS 2003, 20th Annual Symposium on Theoretical Aspects of Computer Science, pp. 415–426. Springer, Berlin (2003)

    Google Scholar 

  13. Grimmett, G.R., Stirzaker, D.R.: Probability and Random Processes, 2nd edn. Oxford University Press, New York (1992)

    Google Scholar 

  14. Hajek, B.: Hitting-time and occupation-time bounds implied by drift analysis with applications. Adv. Appl. Probab. 13(3), 502–525 (1982)

    Article  Google Scholar 

  15. Happ, E., Johannsen, D., Klein, C., Neumann, F.: Rigorous analyses of fitness-proportional selection for optimizing linear functions. In: Ryan, C., Keijzer, M. (eds.) Genetic and Evolutionary Computation Conference (GECCO-2008), pp. 953–960. ACM, New York (2008)

    Chapter  Google Scholar 

  16. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algorithms. Artif. Intell. 127(1), 57–85 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. He, J., Yao, X.: Erratum to: Drift analysis and average time complexity of evolutionary algorithms [Artificial Intelligence 127(1):57–85, 2001]. Artif. Intell. 140(1/2), 245–248 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. He, J., Yao, X.: A study of drift analysis for estimating computation time of evolutionary algorithms. Nat. Comput. 3(1), 21–35 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jägersküpper, J.: Combining Markov-chain analysis and drift analysis—the (1+1) evolutionary algorithm on linear functions reloaded. Algorithmica 59(3), 409–424 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Neumann, F., Oliveto, P.S., Witt, C.: Theoretical analysis of fitness-proportional selection: landscapes and efficiency. In: Rothlauf, F. (ed.) Genetic and Evolutionary Computation Conference (GECCO-2009), pp. 835–842. ACM, New York (2009)

    Chapter  Google Scholar 

  21. Neumann, F., Wegener, I.: Randomized local search, evolutionary algorithms, and the minimum spanning tree problem. Theor. Comput. Sci. 378(1), 32–40 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Oliveto, P.S., Witt, C.: Simplified drift analysis for proving lower bounds in evolutionary computation. Algorithmica 59(3), 369–386 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wegener, I.: Methods for the analysis of evolutionary algorithms on pseudo-Boolean functions. In: Sarker, R., Yao, X., Mohammadian, M. (eds.) Evolutionary Optimization, pp. 349–369. Kluwer Academic, Dordrecht (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie Ann Goldberg.

Additional information

This work was begun while both authors were visiting the “Centre de Recerca Matemática de Catalunya”. It profited greatly from this ideal environment for collaboration.

A preliminary announcement of the result (without proofs) appeared in [3].

The work described in this paper was partly supported by EPSRC Research Grant (refs EP/I011528/1) “Computational Counting”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doerr, B., Goldberg, L.A. Adaptive Drift Analysis. Algorithmica 65, 224–250 (2013). https://doi.org/10.1007/s00453-011-9585-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-011-9585-3

Keywords