Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Complexity of the Empire Colouring Problem

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We investigate the computational complexity of the empire colouring problem (as defined by Percy Heawood in Q. J. Pure Appl. Math. 24:332–338, 1890) for maps containing empires formed by exactly r>1 countries each. We prove that the problem can be solved in polynomial time using s colours on maps whose underlying adjacency graph has no induced subgraph of average degree larger than s/r. However, if s≥3, the problem is NP-hard even if the graph is a for forests of paths of arbitrary lengths (for any r≥2, provided \(s < 2r - \sqrt{2r + \frac{1}{4}}+ \frac{3}{2}\)). Furthermore we obtain a complete characterization of the problem’s complexity for the case when the input graph is a tree, whereas our result for arbitrary planar graphs fall just short of a similar dichotomy. Specifically, we prove that the empire colouring problem is NP-hard for trees, for any r≥2, if 3≤s≤2r−1 (and polynomial time solvable otherwise). For arbitrary planar graphs we prove NP-hardness if s<7 for r=2, and s<6r−3, for r≥3. The result for planar graphs also proves the NP-hardness of colouring with less than 7 colours graphs of thickness two and less than 6r−3 colours graphs of thickness r≥3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Beineke, L.W.: Biplanar graphs: a survey. Comput. Math. Appl. 34(11), 1–8 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beineke, L.W., Harary, F.: The thickness of the complete graph. Can. J. Math. 17, 850–859 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beineke, L.W., Harary, F., Moon, J.W.: On the thickness of the complete bipartite graph. Proc. Camb. Philos. Soc. 60(1), 1–5 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brooks, R.L.: On colouring the nodes of a network. Proc. Camb. Philos. Soc. 37, 194–197 (1941)

    Article  MathSciNet  Google Scholar 

  5. Bryant, D.E.: Cycle decompositions of the complete graphs. In: Hilton, A.J.W., Talbot, J.M. (eds.) Surveys in Combinatorics. London Mathematical Society Lecture Notes Series, vol. 346, pp. 67–97. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  6. Cooper, C., McGrae, A.R.A., Zito, M.: Martingales on trees and the empire chromatic number of random trees. In: Kutyłowski, M., Gebala, M., Charatonik, W. (eds.) FCT 2009. Lecture Notes in Computer Science, vol. 5699, pp. 74–83. Springer, Berlin (2009)

    Google Scholar 

  7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  8. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173. Springer, Berlin (1999)

    Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Computer and Intractability, a Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    Google Scholar 

  10. Gibbons, A.M.: Algorithmic Graph Theory. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  11. Heawood, P.J.: Map colour theorem. Q. J. Pure Appl. Math. 24, 332–338 (1890)

    MATH  Google Scholar 

  12. Hutchinson, J.P.: Coloring ordinary maps, maps of empires, and maps of the moon. Math. Mag. 66(4), 211–226 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jackson, B., Ringel, G.: Solution of Heawood’s empire problem in the plane. J. Reine Angew. Math. 347, 146–153 (1983)

    MathSciNet  Google Scholar 

  14. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations. Proceedings of a Symposium on the Complexity of Computer Computations, March 1972, Yorktown Heights, NY, pp. 85–103. Plenum Press, New York (1972)

    Chapter  Google Scholar 

  15. Lovász, L.: Combinatorial Problems and Exercises, 2nd edn. North-Holland, Amsterdam (1993)

    MATH  Google Scholar 

  16. Lucas, E.: Récreations Mathématiqués, vol. II. Gauthier-Villars, Paris (1892)

    Google Scholar 

  17. Mäkinen, E., Poranen, T.: An annotated bibliography on the thickness, outerthickness, and arboricity of a graph. In: D-NET PUBLICATIONS, vol. D-2009-3. University of Tampere, Tampere (2009)

    Google Scholar 

  18. McGrae, A.R., Zito, M.: Colouring random empire trees. In: Ochmański, E., Tyszkiewicz, J. (eds.) Mathematical Foundations of Computer Science 2008. Lecture Notes in Computer Science, vol. 5162, pp. 515–526. Springer, Berlin (2008)

    Chapter  Google Scholar 

  19. McGrae, A.R.A.: Colouring empires in random trees. PhD thesis, Department of Computer Science, University of Liverpool (2010). Available from http://www.csc.liv.ac.uk/research/techreports/techreports.html as technical report ULCS-10-007

  20. Mutzel, P., Odenthal, T., Scharbrodt, M.: The thickness of graphs: a survey. Graphs Comb. 14, 59–73 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Zito.

Additional information

A preliminary version of this work appeared in the Proceedings of the 37th International Workshop on Graph-Theoretic Concepts in Computer Science 2011 (on pp. 179–190 of the book published by Springer as volume 6986 of the Lecture Notes in Computer Science Series).

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGrae, A.R.A., Zito, M. The Complexity of the Empire Colouring Problem. Algorithmica 68, 483–503 (2014). https://doi.org/10.1007/s00453-012-9680-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-012-9680-0

Keywords