Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Computing H-Joins with Application to 2-Modular Decomposition

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We present here a general framework to design algorithms that compute H-join. For a given bipartite graph H, we say that a graph G admits a H-join decomposition or simply a H-join, if the vertices of G can be partitioned in |H| parts connected as in H. This graph H is a kind of pattern, that we want to discover in G. This framework allows us to present fastest known algorithms for the computation of P 4-join (aka N-join), P 5-join (aka W-join), C 6-join (aka 6-join). We also generalize this method to find a homogeneous pair (also known as 2-module), a pair {M 1,M 2} such that for every vertex x∉(M 1M 2) and i∈{1,2}, x is either adjacent to all vertices in M i or to none of them. First used in the context of perfect graphs (Chvátal and Sbihi in Graphs Comb. 3:127–139, 1987), it is a generalization of splits (a.k.a. 1-joins) and of modules. The algorithmics to compute them appears quite involved. In this paper, we describe an O(mn 2)-time algorithm computing all maximal homogeneous pairs of a graph, which not only improves a previous bound of O(mn 3) for finding only one pair (Everett et al. in Discrete Appl. Math. 72:209–218, 1997), but also uses a nice structural property of homogenous pairs, allowing to compute a canonical decomposition tree for sesquiprime graphs (i.e., graphs G having no module and such that for every vertex vG, Gv also has no module).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 3
Algorithm 4

Similar content being viewed by others

References

  1. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified boolean formulas. Inf. Process. Lett. 8(3), 121–123 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bui-Xuan, B.-M., Telle, J.A., Vatshelle, M.: H-join decomposable graphs and algorithms with runtime single exponential in rankwidth. Discrete Appl. Math. 158(7), 809–819 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bui-Xuan, B.-M., Telle, J.A., Vatshelle, M.: Boolean-width of graphs. Theor. Comput. Sci. 412(39), 5187–5204 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Charbit, P., Habib, M., Trotignon, N., Vuskovic, K.: Detecting 2-joins faster. J. Discrete Algorithms 17, 60–66 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Charbit, P., de Montgolfier, F., Raffinot, M.: A simple linear time split decomposition algorithm of undirected graphs. SIAM J. Discrete Math. 26(2), 499–514 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chein, M., Habib, M., Maurer, M.C.: Partitive hypergraphs. Discrete Math. 37(1), 35–50 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chvátal, V., Sbihi, N.: Bull-free graphs are perfect. Graphs Comb. 3, 127–139 (1987)

    Article  MATH  Google Scholar 

  8. Conforti, M., Cornuéjols, G., Kapoor, A., Vušković, K.: Balanced 0,±1 matrices, Part I: Decomposition theorem, and Part II: Recognition algorithm. J. Comb. Theory, Ser. B 81, 243–306 (2001)

    Article  MATH  Google Scholar 

  9. Cunningham, W.H., Edmonds, J.: A combinatorial decomposition theory. Can. J. Math. 32(3), 734–765 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  10. Everett, H., Klein, S., Reed, B.: An algorithm for finding homogeneous pairs. Discrete Appl. Math. 72, 209–218 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Feder, T., Hell, P., Král, D., Sgall, J.: Two algorithms for general list matrix partitions. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 870–876 (2005)

    Google Scholar 

  12. Feder, T., Hell, P., Klein, S., Motwani, R.: List partitions. SIAM J. Discrete Math. 16, 61–80 (2003)

    Article  MathSciNet  Google Scholar 

  13. Habib, M., Mamcarz, A., de Montgolfier, F.: Algorithms for some H-join decompositions. In: Latin American Theoretical Informatics. Lecture Notes in Computer Science, vol. 7256, pp. 446–457 (2012)

    Google Scholar 

  14. Habib, M., Paul, C.: A survey of the algorithmic aspects of modular decomposition. Comput. Sci. Rev. 4, 41–59 (2010)

    Article  Google Scholar 

  15. Habib, M., Paul, C., Viennot, L.: Partition refinement techniques: an interesting algorithmic toolkit. Int. J. Found. Comput. Sci. 10(2), 147–170 (1999)

    Article  MathSciNet  Google Scholar 

  16. de Montgolfier, F.: Décomposition modulaire des graphes: théorie, extensions et algorithmes. Ph.D. thesis, Université Montpellier II (2003)

  17. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput. 16, 973–989 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rao, M.: Décompositions de graphes et algorithmes efficaces. Ph.D. thesis, Université de Metz (2006)

Download references

Acknowledgements

The authors wish to thank the referees for their very careful readings, their suggestions greatly improve our writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Habib.

Additional information

A preliminary version of this work was presented at Latin 2012 [13].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habib, M., Mamcarz, A. & de Montgolfier, F. Computing H-Joins with Application to 2-Modular Decomposition. Algorithmica 70, 245–266 (2014). https://doi.org/10.1007/s00453-013-9820-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-013-9820-1

Keywords