Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Data Structures on Event Graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We investigate the behavior of data structures when the input and operations are generated by an event graph. This model is inspired by Markov chains. We are given a fixed graph G, whose nodes are annotated with operations of the type insert, delete, and query. The algorithm responds to the requests as it encounters them during a (random or adversarial) walk in G. We study the limit behavior of such a walk and give an efficient algorithm for recognizing which structures can be generated. We also give a near-optimal algorithm for successor searching if the event graph is a cycle and the walk is adversarial. For a random walk, the algorithm becomes optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chassaing, P.: Optimality of move-to-front for self-organizing data structures with locality of references. Ann. Appl. Probab. 3(4), 1219–1240 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chazelle, B.: The Discrepancy Method: Randomness and Complexity. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  3. Chazelle, B., Mulzer, W.: Markov incremental constructions. Discrete Comput. Geom. 42(3), 399–420 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Crochemore, M., Iliopoulos, C.S., Kubica, M., Rahman, M.S., Tischler, G., Wale, T.: Improved algorithms for the range next value problem and applications. Theor. Comput. Sci. 434, 23–34 (2012)

    Article  MATH  Google Scholar 

  5. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and linear space. Inf. Process. Lett. 6(3), 80–82 (1977)

    Article  MATH  Google Scholar 

  6. van Emde Boas, P., Kaas, R., Zijlstra, E.: Design and implementation of an efficient priority queue. Math. Syst. Theory 10(2), 99–127 (1976)

    Article  Google Scholar 

  7. Hotz, G.: Search trees and search graphs for Markov sources. Elektron. Inf.verarb. Kybern. 29(5), 283–292 (1993)

    MATH  Google Scholar 

  8. Kapoor, S., Reingold, E.M.: Stochastic rearrangement rules for self-organizing data structures. Algorithmica 6(2), 278–291 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Karlin, A.R., Phillips, S.J., Raghavan, P.: Markov paging. SIAM J. Comput. 30(3), 906–922 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Konneker, L.K., Varol, Y.L.: A note on heuristics for dynamic organization of data structures. Inf. Process. Lett. 12(5), 213–216 (1981)

    Article  Google Scholar 

  11. Lam, K., Leung, M.Y., Siu, M.K.: Self-organizing files with dependent accesses. J. Appl. Probab. 21(2), 343–359 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  12. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. Am. Math. Soc., Providence (2009)

    MATH  Google Scholar 

  13. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  14. Mulzer, W.: A note on predecessor searching in the pointer machine model. Inf. Process. Lett. 109(13), 726–729 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Phatarfod, R.M., Pryde, A.J., Dyte, D.: On the move-to-front scheme with Markov dependent requests. J. Appl. Probab. 34(3), 790–794 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Schulz, F., Schömer, E.: Self-organizing data structures with dependent accesses. In: Proceedings of the 23rd International Colloquium on Automata, Languages, and Programming (ICALP), pp. 526–537 (1996)

    Chapter  Google Scholar 

  17. Shedler, G.S., Tung, C.: Locality in page reference strings. SIAM J. Comput. 1(3), 218–241 (1972)

    Article  MATH  Google Scholar 

  18. Vitter, J.S., Krishnan, P.: Optimal prefetching via data compression. J. ACM 43(5), 771–793 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referees for their thorough reading of the paper and their many helpful suggestions that have improved the presentation of this paper, as well as for pointing out [4] to us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Mulzer.

Additional information

A preliminary version appeared as B. Chazelle and W. Mulzer, Data Structures on Event Graphs in Proc. 20th ESA, pp. 313–324, 2012.

W. Mulzer was supported in part by DFG grant MU3501/1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chazelle, B., Mulzer, W. Data Structures on Event Graphs. Algorithmica 71, 1007–1020 (2015). https://doi.org/10.1007/s00453-013-9838-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-013-9838-4

Keywords