Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Performance Analysis of the (1+1) Evolutionary Algorithm for the Multiprocessor Scheduling Problem

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

In recent years, there has been considerable progress in the theoretical study of evolutionary algorithms (EAs) for discrete optimization problems. However, results on the performance analysis of EAs for NP-hard problems are rare. This paper contributes a theoretical understanding of EAs on the NP-hard multiprocessor scheduling problem. The worst-case bound on the (1+1)EA for the multiprocessor scheduling problem and a worst-case example are presented. It is proved that the (1+1)EA on \(Q2\mid \mid C_\mathrm{max}\) problem achieves an approximation ratio of \(\frac{1+\sqrt{5}}{2}\) in expected time \(O(n^2)\). Finally, the theoretical analysis on three selected instances of the multiprocessor scheduling problem shows that EAs outperform local search algorithms on these instances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  2. Rudolph, G.: Convergence Properties of Evolutionary Algorithms. Hamburg Kovac, Hamburg (1997)

    Google Scholar 

  3. Oliveto, P.S., He, J., Yao, X.: Time complexity of evolutionary algorithms for combinatorial optimization: a decade of results. Int. J. Autom. Comput. 4(3), 281–293 (2007)

    Article  Google Scholar 

  4. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization - Algorithms and Their Computational Complexity. Springer, New York (2010)

    MATH  Google Scholar 

  5. Karlin, S., Taylor, H.M.: A First Course in Stochastic Processes, 2nd edn. Academic Press, New York (1975)

    MATH  Google Scholar 

  6. Mitzenmacher, M., Upfal, E.: Propability and Computing. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  7. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theor. Comput. Sci. 276, 51–81 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algorithms. Artifi. Intell. 127(1), 57–85 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Giel, O., Wegener, I.: Evolutionary algorithms and the maximum matching problem. In: Proceedings of the 20th Annual Symposium on Theoretical Aspects of Computer Science. Lecture Notes in Computer Science, vol. 2607, pp. 415–426. Speringer-Verlag, Berlin (2003)

  10. Neumann, F., Wegener, I.: Randomized local search, evolutionary algorithms, and the minimum spanning tree problem. Theor. Comput. Sci. 378(1), 32–40 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Doerr, B., Happ, E., Klein, C.: A tight analysis of the (1+1)-EA for the single source shortest path problem. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC’07), pp. 1890–1895. IEEE Press, Singapore (2007)

  12. Baswana, S., Biswas, S., Doerr, B., Friedrich, T., Kurur, P.P., Neumann, F.: Computing single source shortest paths using single-objective fitness functions. In: Jansen, T., Garibay, I., Wiegand, R.P., Wu, A.S. (eds.) Proceedings of the Tenth International Workshop on Foundations of Genetic Algorithms (FOGA’09), pp. 59–66. ACM Press, Orlando (2009)

  13. He, J., Yao, X.: From an individual to a population: an analysis of the first hitting time of populationbased evolutionary algorithms. IEEE Trans. Evol. Comput. 6(5), 495–511 (2002)

    Article  Google Scholar 

  14. Jansen, T., Jong, K.A.D., Wegener, I.: On the choice of the offspring population size in evolutionary algorithms. Evol. Comput. 13(4), 413–440 (2005)

    Article  Google Scholar 

  15. Chen, T., Tang, K., Chen, G., Yao, X.: A large population size can be unhelpful in evolutionary algorithms. Theor. Comput. Sci. 436(8), 54–70 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chen, T., He, J., Sun, G., Chen, G., Yao, X.: A new approach to analyzing average time complexity of population-based evolutionary algorithms on unimodal problems. IEEE Trans. Syst. Man Cybernet. B 39(5), 1092–1106 (2009)

    Article  Google Scholar 

  17. Garey, M.R., Johnson, D.S.: Computers and Intractability—A Guide to the Theory of NP-completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  18. Witt, C.: Worst-case and average-case approximations by simple randomized search heuristics. In: Proceedings of the 22th Symposium on Theoretical Aspects of Computer Science Proceedings (STACS ’05). Lecture Notes on Computer Science, vol. 3404, pp. 44–56. Springer, Heidelberg (2005)

  19. Gunia, C.: On the analysis of the approximation capability of simple evolutionary algorithms for scheduling problems. In: Beyer, H.G., O’Reilly, U.M. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pp. 571–578. ACM, New York (2005)

  20. Sutton, A. M., Neumann, F.: A parameterized runtime analysis of simple evolutionary algorithms for makespan scheduling. In: Proceedings of the Twelfth International Conference on Parallel Problem Solving from Nature (PPSN’12), Part I. Lecture Notes in Computer Science, vol. 7491, pp. 52–61. Speringer-Verlag, Berlin (2012)

  21. Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Analyses of simple hybrid evolutionary algorithms for the vertex cover problem. Evol. Comput. 17(1), 3–20 (2009)

    Article  Google Scholar 

  22. Yu, Y., Yao, X., Zhou, Z.H.: On the approximation ability of evolutionary optimization with application to minimum set cover. Artif. Intell. 180–181, 20–33 (2012)

    Article  MathSciNet  Google Scholar 

  23. Sutton, A. M., Neumann, F.: A parameterized runtime analysis of evolutionary algorithms for the euclidean traveling salesperson problem. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, pp. 1105–1111. AAAI Press, Milano (2012)

  24. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy, Kan, A.H.G.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discr. Math. 5, 287–326 (1979)

    Article  MATH  Google Scholar 

  25. Potts, C., Strusevich, V.: Fifty years of scheduling: a survey of milestones. J. Oper. Res. Soc. 60(S1), 41–68 (2009)

    Article  Google Scholar 

  26. Finn, G., Horowitz, E.: A linear time approximation algorithm for multiprocessor scheduling. BIT 19, 312–320 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  27. Cho, Y., Sahni, S.: Bounds for list schedules on uniform processors. SIAM J. Comput. 9(1), 91–103 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  28. Langston, M.: Improved 0/1-interchange scheduling. BIT Numer. Math. 22(3), 282–290 (1982)

    Article  MATH  Google Scholar 

  29. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems: theoretical and practical results. J. ACM 34, 144–162 (1987)

    Article  MathSciNet  Google Scholar 

  30. Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling unrelated parallel machines. Math. Program. 46, 259–271 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  31. Schuurman, P., Vredeveld, T.: Performance guarantees of local search for multiprocessor scheduling. Inf. J. Comput. 19(1), 52–63 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  32. Ammons, J.C., Lofgren, C.B., McGinnis, L.F.: A large scale machine loading problem in flexible assembly. Ann. Oper. Res. 3(7), 317–332 (1985)

    Article  Google Scholar 

  33. Stecke, K.E.: Design, planning, scheduling, and control problems of flexible manufacturing systems. Ann. Oper. Res. 3(1), 1–12 (1985)

    Article  Google Scholar 

  34. Carpenter, J., Funk, S., Holman, P., Srinivasan, A., Anderson, J., Baruah, S.: A categorization of real-time multiprocessor scheduling problems and algorithms. In: Joseph, Y.Leung (ed.) Handbook on Scheduling Algorithms, Methods, and Models, pp. 30.1–30.19. Chapman Hall/CRC, Boca Raton (2004)

    Google Scholar 

  35. Michiels, W., Aarts, E., Korst, J.: Theoretical Aspects of Local Search. Springer, Berlin (2007)

    MATH  Google Scholar 

Download references

Acknowledgments

Y. Zhou supported by National Natural Science Foundation of China under the Grant 61170081. J. Zhang supported by National Natural Science Foundation of China under the Grants 61125205 and 61332002. Y. Wang supported by National Natural Science Foundation of China under the Grant 61273314.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuren Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Zhang, J. & Wang, Y. Performance Analysis of the (1+1) Evolutionary Algorithm for the Multiprocessor Scheduling Problem. Algorithmica 73, 21–41 (2015). https://doi.org/10.1007/s00453-014-9898-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-014-9898-0

Keywords