Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Hospitals/Residents Problem with Lower Quotas

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

The Hospitals/Residents problem is a many-to-one extension of the stable marriage problem. In an instance, each hospital specifies a quota, i.e., an upper bound on the number of positions it provides. It is well-known that in any instance, there exists at least one stable matching, and finding one can be done in polynomial time. In this paper, we consider an extension in which each hospital specifies not only an upper bound but also a lower bound on its number of positions. In this setting, there can be instances that admit no stable matching, but the problem of asking if there is a stable matching is solvable in polynomial time. In case there is no stable matching, we consider the problem of finding a matching that is “as stable as possible”, namely, a matching with a minimum number of blocking pairs. We show that this problem is hard to approximate within the ratio of \((|H|+|R|)^{1-\epsilon }\) for any positive constant \(\epsilon \) where \(H\) and \(R\) are the sets of hospitals and residents, respectively. We then tackle this hardness from two different angles. First, we give an exponential-time exact algorithm whose running time is \(O((|H||R|)^{t+1})\), where \(t\) is the number of blocking pairs in an optimal solution. Second, we consider another measure for optimization criteria, i.e., the number of residents who are involved in blocking pairs. We show that this problem is still NP-hard but has a polynomial-time \(\sqrt{|R|}\)-approximation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abraham, D.J., Biró, P., Manlove, D.F.: “Almost stable” matchings in the roommates problem. In: Proceedings of WAOA 2005, LNCS 3879, pp. 1–14 (2006)

  2. Abraham, D.J., Irving, R.W., Manlove, D.F.: Two algorithms for the student-project allocation problem. J. Discrete Algorithms 5(1), 73–90 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aldershof, B., Carducci, O.M.: Stable matchings with couples. Discrete Appl. Math. 68, 203–207 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Asahiro, Y., Iwama, K., Tamaki, H., Tokuyama, T.: Greedily finding a dense subgraph. J. Algorithms 34(2), 203–221 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., Vijayaraghavan, A.: Detecting high log-densities—an \(O(n^{1/4})\) approximation for densest \(k\)-subgraph. Proc. STOC 2010, 201–210 (2010)

    MathSciNet  Google Scholar 

  6. Biró, P., Fleiner, T., Irving, R.W., Manlove, D.F.: The college admissions problem with lower and common quotas. Theor. Comput. Sci. 411(34–36), 3136–3153 (2010)

    Article  MATH  Google Scholar 

  7. Biró, P., Manlove, D.F., Mittal, S.: Size versus stability in the marriage problem. Theor. Comput. Sci. 411(16–18), 1828–1841 (2010)

    Article  MATH  Google Scholar 

  8. Canadian Resident Matching Service (CaRMS), http://www.carms.ca/

  9. Feige, U.: Relations between average case complexity and approximation complexity. Proc. STOC 2002, 534–543 (2002)

    MathSciNet  Google Scholar 

  10. Feige, U., Kortsarz, G., Peleg, D.: The dense \(k\)-subgraph problem. Algorithmica 29, 410–421 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fleiner, T., Kamiyama, N.: A matroid approach to stable matchings with lower quotas. Proc. SODA 2012, 135–142 (2012)

    MathSciNet  Google Scholar 

  12. Gabow, H.N.: An efficient reduction technique for degree-constrained subgraph and bidirected network flow problems. Proc. STOC 83, 448–456 (1983)

    Google Scholar 

  13. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math. Mon. 69, 9–15 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gale, D., Sotomayor, M.: Some remarks on the stable matching problem. Discrete Appl. Math. 11, 223–232 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  15. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY (1979)

    MATH  Google Scholar 

  16. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algorithms. MIT Press, Boston, MA (1989)

    MATH  Google Scholar 

  17. Halldórsson, M.M., Iwama, K., Miyazaki, S., Yanagisawa, H.: Improved approximation results of the stable marriage problem. ACM Trans. Algorithms 3(3) Article No. 30 (2007)

  18. Hamada, K., Iwama, K., Miyazaki, S.: The hospitals/residents problem with quota lower bounds. In: Proc. MATCH-UP (satellite workshop of ICALP 2008), pp. 55–66 (2008)

  19. Hamada, K., Iwama, K., Miyazaki, S.: An improved approximation lower bound for finding almost stable maximum matchings. Inf. Process. Lett. 109(18), 1036–1040 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hamada, K., Iwama, K., Miyazaki, S.: The hospitals/residents problem with quota lower bounds. In: Proc. ESA 2011, LNCS 6942, pp. 180–191 (2011)

  21. Huang, C.-C.: Classified stable matching. Proc. SODA 2010, 1235–1253 (2010)

    Google Scholar 

  22. Irving, R.W., Manlove, D.F., Scott, S.: The hospital/residents problem with ties. In: Proceedings of SWAT 2000, LNCS 1851, pp. 259–271 (2000)

  23. Irving, R.W., Manlove, D.F., Scott, S.: The stable marriage problem with master preference lists. Discrete Appl. Math. 156(15), 2959–2977 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Khot, S.: Ruling out PTAS for graph min-bisection, densest subgraph and bipartite clique. Proc. FOCS 2004, 136–145 (2004)

    Google Scholar 

  25. Khuller, S., Mitchell, S.G., Vazirani, V.V.: On-Line algorithms for weighted bipartite matching and stable marriages. Theor. Comput. Sci. 127(2), 255–267 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  26. McDermid, E.J., Manlove, D.F.: Keeping partners together: algorithmic results for the hospitals/residents problem with couples. J. Comb. Optim. 19(3), 279–303 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ronn, E.: NP-complete stable matching problems. J. Algorithms 11, 285–304 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  28. Roth, A.E.: The evolution of the labor market for medical interns and residents: a case study in game theory. J. Polit. Econ. 92(6), 991–1016 (1984)

    Article  Google Scholar 

  29. Teo, C.P., Sethuraman, J.V., Tan, W.P.: Gale–Shapley stable marriage problem revisited: strategic issues and applications. Manag. Sci. 47(9), 1252–1267 (2001)

    Article  MATH  Google Scholar 

  30. Vinterbo, S.A.: A stab at approximating minimum subadditive join. In: Proceedings of WADS 2007, LNCS 4619, pp. 214–225 (2007)

Download references

Acknowledgments

The authors would like to thank David F. Manlove for his valuable comments on this work. We also would like to thank anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuichi Miyazaki.

Additional information

A preliminary version of this paper was presented at the 19th Annual European Symposium on Algorithms, ESA 2011 [20].

Kazuo Iwama: Supported by JSPS KAKENHI Grant number 25240002.

Shuichi Miyazaki: Supported by JSPS KAKENHI Grant number 24500013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamada, K., Iwama, K. & Miyazaki, S. The Hospitals/Residents Problem with Lower Quotas. Algorithmica 74, 440–465 (2016). https://doi.org/10.1007/s00453-014-9951-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-014-9951-z

Keywords