Abstract
We introduce and investigate a new notion of resilience in graph spanners. Let \(S\) be a spanner of a weighted graph \(G\). Roughly speaking, we say that \(S\) is resilient if all its point-to-point distances are resilient to edge failures. Namely, whenever any edge in \(G\) fails, then as a consequence of this failure all distances do not degrade in \(S\) substantially more than in \(G\) (i.e., the relative distance increases in \(S\) are very close to those in the underlying graph \(G\)). In this paper we show that sparse resilient spanners exist, and that they can be computed efficiently.
Similar content being viewed by others
References
Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter and shortest paths (without matrix multiplication). SIAM J. Comput. 28(4), 1167–1181 (1999)
Althofer, I., Das, G., Dobkin, D.P., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete Comput. Geom. 9, 81–100 (1993)
Ausiello, G., Demetrescu, C., Franciosa, P.G., Italiano, G.F., Ribichini, A.: Graph spanners in the streaming model: an experimental study. Algorithmica 55(2), 346–374 (2009)
Ausiello, G., Franciosa, P.G., Italiano, G.F.: Small stretch spanners on dynamic graphs. J. Graph Algorithms Appl. 10(2), 365–385 (2006)
Ausiello, G., Franciosa, P.G., Italiano, G.F., Ribichini, A.: Computing graph spanner in small memory: fault-tolerance and streaming. Discrete Math. Algorithms Appl. 2(4), 591–605 (2010)
Baswana, S.: Dynamic algorithms for graph spanners. In: Proceedings of 13th Annual European Symposium on Algorithms (ESA’06), pp. 76–87 (2006)
Baswana, S., Kavitha, T., Mehlhorn, K., Pettie, S.: Additive spanners and (alpha, beta)-spanners. ACM Trans. Algorithms 7(1), 5:1–5:26 (2010)
Baswana, S., Khurana, S., Sarkar, S.: Fully dynamic randomized algorithms for graph spanners. ACM Trans. Algorithms 8(4), 35:1–35:51 (2012)
Bondy, J.A., Simonovits, M.: Cycles of even length in graphs. J. Comb. Theory Ser. B 16(2), 97–105 (1974)
Braunschvig, G., Chechik, S., Peleg, D.: Fault tolerant additive spanners. In: Graph-Theoretic Concepts in Computer Science—38th International Workshop, (WG’12), volume 7551 of LNCS, pp 206–214. Springer, Berlin (2012)
Chechik, S.: New additive spanners. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’13), pp. 498–512 (2013)
Chechik, S., Langberg, M., Peleg, D., Roditty, L.: Fault tolerant spanners for general graphs. SIAM J. Comput. 39(7), 3403–3423 (2010)
Coppersmith, D., Elkin, M.: Sparse sourcewise and pairwise distance preservers. SIAM J. Discrete Math. 20(2), 463–501 (2006)
Demetrescu, C., Thorup, M., Chowdhury, R.A., Ramachandran, V.: Oracles for distances avoiding a failed node or link. SIAM J. Comput. 37(5), 1299–1318 (2008)
Dinitz, M., Krauthgamer, R.: Fault-tolerant spanners: better and simpler. In: Proceedings of the 30th Annual ACM Symposium on Principles of Distributed Computing (PODC’11), pp. 169–178 (2011)
Dor, D., Halperin, S., Zwick, U.: All-pairs almost shortest paths. SIAM J. Comput. 29(5), 1740–1759 (2000)
Elkin, M.: Streaming and fully dynamic centralized algorithms for constructing and maintaining sparse spanners. ACM Trans. Algorithms 7(2), 1–17 (2011)
Halperin, S., Zwick, U.: Linear time deterministic algorithm for computing spanners for unweighted graphs (1996) (unpublished manuscript)
Jacob, R., Koschützki, D., Lehmann, K.A., Peeters, L., Tenfelde-Podehl, D.: Algorithms for centrality indices. In: Brandes, U., Erlebach, T. (eds.) Network Analysis, volume 3418 of LNCS, pp. 62–82. Springer, Berlin (2005)
Kővári, T., Sós, V.T., Turán, P.: On a problem of K. Zarankiewicz. Colloq. Math. 3(1), 50–57 (1954)
Koschützki, D., Lehmann, K.A., Peeters, L., Richter, S., Tenfelde-Podehl, D., Zlotowski, O.: Centrality indices. In: Brandes, U., Erlebach, T. (eds.) Network Analysis, volume 3418 of LNCS, pp. 16–61. Springer, Berlin (2005)
Matoušek, J.: Lectures on Discrete Geometry. Springer, Berlin (2002)
Nisan, N., Ronen, A.: Algorithmic mechanism design. Games Econ. Behav. 35(1–2), 166–196 (2001)
Peleg, D., Shäffer, A.: Graph spanners. J. Graph Theory 13, 99–116 (1989)
Roditty, L., Thorup, M., Zwick, U.: Deterministic constructions of approximate distance oracles and spanners. In: Proceedings of the 32nd International Colloquium on Automata, Languages and Programming (ICALP’05), volume 3580 of LNCS, pp. 261–272. Springer, Berlin (2005)
Zarankiewicz, K.: Problem p 101. Colloq. Math. 2, 301 (1951)
Acknowledgments
We thank the anonymous referees for their thoughtful reading of the paper and the valuable comments.
Author information
Authors and Affiliations
Corresponding author
Additional information
Work partially supported by the Italian Ministry of Education, University, and Research (MIUR) under PRIN 2012C4E3KT national research project “AMANDA—Algorithmics for MAssive and Networked DAta”. A preliminary version of this paper was presented at the 21st Annual European Symposium on Algorithms, LNCS 8125, pp. 85–96.
Rights and permissions
About this article
Cite this article
Ausiello, G., Franciosa, P.G., Italiano, G.F. et al. On Resilient Graph Spanners. Algorithmica 74, 1363–1385 (2016). https://doi.org/10.1007/s00453-015-0006-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00453-015-0006-x