Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On Resilient Graph Spanners

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We introduce and investigate a new notion of resilience in graph spanners. Let \(S\) be a spanner of a weighted graph \(G\). Roughly speaking, we say that \(S\) is resilient if all its point-to-point distances are resilient to edge failures. Namely, whenever any edge in \(G\) fails, then as a consequence of this failure all distances do not degrade in \(S\) substantially more than in \(G\) (i.e., the relative distance increases in \(S\) are very close to those in the underlying graph \(G\)). In this paper we show that sparse resilient spanners exist, and that they can be computed efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter and shortest paths (without matrix multiplication). SIAM J. Comput. 28(4), 1167–1181 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Althofer, I., Das, G., Dobkin, D.P., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete Comput. Geom. 9, 81–100 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ausiello, G., Demetrescu, C., Franciosa, P.G., Italiano, G.F., Ribichini, A.: Graph spanners in the streaming model: an experimental study. Algorithmica 55(2), 346–374 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ausiello, G., Franciosa, P.G., Italiano, G.F.: Small stretch spanners on dynamic graphs. J. Graph Algorithms Appl. 10(2), 365–385 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ausiello, G., Franciosa, P.G., Italiano, G.F., Ribichini, A.: Computing graph spanner in small memory: fault-tolerance and streaming. Discrete Math. Algorithms Appl. 2(4), 591–605 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baswana, S.: Dynamic algorithms for graph spanners. In: Proceedings of 13th Annual European Symposium on Algorithms (ESA’06), pp. 76–87 (2006)

  7. Baswana, S., Kavitha, T., Mehlhorn, K., Pettie, S.: Additive spanners and (alpha, beta)-spanners. ACM Trans. Algorithms 7(1), 5:1–5:26 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Baswana, S., Khurana, S., Sarkar, S.: Fully dynamic randomized algorithms for graph spanners. ACM Trans. Algorithms 8(4), 35:1–35:51 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bondy, J.A., Simonovits, M.: Cycles of even length in graphs. J. Comb. Theory Ser. B 16(2), 97–105 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  10. Braunschvig, G., Chechik, S., Peleg, D.: Fault tolerant additive spanners. In: Graph-Theoretic Concepts in Computer Science—38th International Workshop, (WG’12), volume 7551 of LNCS, pp 206–214. Springer, Berlin (2012)

  11. Chechik, S.: New additive spanners. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’13), pp. 498–512 (2013)

  12. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: Fault tolerant spanners for general graphs. SIAM J. Comput. 39(7), 3403–3423 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Coppersmith, D., Elkin, M.: Sparse sourcewise and pairwise distance preservers. SIAM J. Discrete Math. 20(2), 463–501 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Demetrescu, C., Thorup, M., Chowdhury, R.A., Ramachandran, V.: Oracles for distances avoiding a failed node or link. SIAM J. Comput. 37(5), 1299–1318 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dinitz, M., Krauthgamer, R.: Fault-tolerant spanners: better and simpler. In: Proceedings of the 30th Annual ACM Symposium on Principles of Distributed Computing (PODC’11), pp. 169–178 (2011)

  16. Dor, D., Halperin, S., Zwick, U.: All-pairs almost shortest paths. SIAM J. Comput. 29(5), 1740–1759 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Elkin, M.: Streaming and fully dynamic centralized algorithms for constructing and maintaining sparse spanners. ACM Trans. Algorithms 7(2), 1–17 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Halperin, S., Zwick, U.: Linear time deterministic algorithm for computing spanners for unweighted graphs (1996) (unpublished manuscript)

  19. Jacob, R., Koschützki, D., Lehmann, K.A., Peeters, L., Tenfelde-Podehl, D.: Algorithms for centrality indices. In: Brandes, U., Erlebach, T. (eds.) Network Analysis, volume 3418 of LNCS, pp. 62–82. Springer, Berlin (2005)

  20. Kővári, T., Sós, V.T., Turán, P.: On a problem of K. Zarankiewicz. Colloq. Math. 3(1), 50–57 (1954)

    MathSciNet  MATH  Google Scholar 

  21. Koschützki, D., Lehmann, K.A., Peeters, L., Richter, S., Tenfelde-Podehl, D., Zlotowski, O.: Centrality indices. In: Brandes, U., Erlebach, T. (eds.) Network Analysis, volume 3418 of LNCS, pp. 16–61. Springer, Berlin (2005)

  22. Matoušek, J.: Lectures on Discrete Geometry. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  23. Nisan, N., Ronen, A.: Algorithmic mechanism design. Games Econ. Behav. 35(1–2), 166–196 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Peleg, D., Shäffer, A.: Graph spanners. J. Graph Theory 13, 99–116 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Roditty, L., Thorup, M., Zwick, U.: Deterministic constructions of approximate distance oracles and spanners. In: Proceedings of the 32nd International Colloquium on Automata, Languages and Programming (ICALP’05), volume 3580 of LNCS, pp. 261–272. Springer, Berlin (2005)

  26. Zarankiewicz, K.: Problem p 101. Colloq. Math. 2, 301 (1951)

    Google Scholar 

Download references

Acknowledgments

We thank the anonymous referees for their thoughtful reading of the paper and the valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo G. Franciosa.

Additional information

Work partially supported by the Italian Ministry of Education, University, and Research (MIUR) under PRIN 2012C4E3KT national research project “AMANDA—Algorithmics for MAssive and Networked DAta”. A preliminary version of this paper was presented at the 21st Annual European Symposium on Algorithms, LNCS 8125, pp. 85–96.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ausiello, G., Franciosa, P.G., Italiano, G.F. et al. On Resilient Graph Spanners. Algorithmica 74, 1363–1385 (2016). https://doi.org/10.1007/s00453-015-0006-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-015-0006-x

Keywords