Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Cliques in Hyperbolic Random Graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Most complex real world networks display scale-free features. This characteristic motivated the study of numerous random graph models with a power-law degree distribution. There is, however, no established and simple model which also has a high clustering of vertices as typically observed in real data. Hyperbolic random graphs bridge this gap. This natural model has recently been introduced by Krioukov et al. (in Phys Rev E 82(3):036106, 2010) and has shown theoretically and empirically to fulfill all typical properties of real world networks, including power-law degree distribution and high clustering. We study cliques in hyperbolic random graphs G and present new results on the expected number of k-cliques \(\mathbb {E}\left[ K_k\right] \) and the size of the largest clique \(\omega (G)\). We observe that there is a phase transition at power-law exponent \(\beta = 3\). More precisely, for \(\beta \in (2,3)\) we prove \(\mathbb {E}\left[ K_k\right] =n^{k (3-\beta )/2} \varTheta (k)^{-k}\) and \(\omega (G)=\varTheta (n^{(3-\beta )/2})\), while for \(\beta \geqslant 3\) we prove \(\mathbb {E}\left[ K_k\right] =n \, \varTheta (k)^{-k} \) and \(\omega (G)=\varTheta (\log (n)/ \log \log n)\). Furthermore, we show that for \(\beta \geqslant 3\), cliques in hyperbolic random graphs can be computed in time \(\mathcal {O}(n)\). If the underlying geometry is known, cliques can be found with worst-case runtime \(\mathcal {O}(m \cdot n^{2.5})\) for all values of \(\beta \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aiello, W., Chung, F.R.K., Lu, L.: A random graph model for massive graphs. In: 32nd Symposium Theory of Computing (STOC), pp. 171–180 (2000)

  2. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bode, M., Fountoulakis, N., Müller, T.: The Probability that the Hyperbolic Random Graph is Connected. www.math.uu.nl/~Muell001/Papers/BFM.pdf (2014)

  4. Boguñá, M., Papadopoulos, F., Krioukov, D.: Sustaining the internet with hyperbolic mapping. Nat. Commun. 1, 62 (2010)

    Article  Google Scholar 

  5. Candellero, E., Fountoulakis, N.: Clustering and the hyperbolic geometry of complex networks. In: 11th International Workshop Algorithms and Models for the Web Graph (WAW), pp. 1–12 (2014)

  6. Candellero, E., Fountoulakis, N.: Bootstrap percolation and the geometry of complex networks. Stoch. Process. Appl. 126(1), 234–264 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Ann. Discret. Math. 48, 165–177 (1991)

    Article  MATH  Google Scholar 

  8. Diestel, R.: Graph Theory, 4th edn. Springer, Berlin (2012)

    MATH  Google Scholar 

  9. Dubhashi, D., Panconesi, A.: Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  10. Fountoulakis, N.: On a geometrization of the Chung–Lu model for complex networks. J. Complex Netw. 3(3), 361–387 (2015)

    Article  MathSciNet  Google Scholar 

  11. Friedrich, T., Krohmer, A.: Parameterized clique on scale-free networks. In: 23rd International Symposium Algorithms and Computation (ISAAC), pp. 659–668 (2012)

  12. Friedrich, T., Krohmer, A.: Cliques in hyperbolic random graphs. In: 34th IEEE Conference on Computer Communications (INFOCOM), pp. 1544–1552 (2015)

  13. Gugelmann, L., Panagiotou, K., Peter, U.: Random hyperbolic graphs: degree sequence and clustering. In: 39th International Colloquium on Automata, Languages and Programming (ICALP), pp. 573–585 (2012)

  14. Hopcroft, J.E., Karp, R.M.: An \(n^{5/2}\) algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2(4), 225–231 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  15. Janson, S., Łuczak, T., Norros, I.: Large cliques in a power-law random graph. J. Appl. Probab. 47(4), 1124–1135 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jensen, J.: Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math. 30(1), 175–193 (1906)

    Article  MathSciNet  MATH  Google Scholar 

  17. Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguñá, M.: Hyperbolic geometry of complex networks. Phys. Rev. E 82(3), 036106 (2010)

    Article  MathSciNet  Google Scholar 

  18. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford Large Network Dataset Collection. http://snap.stanford.edu/data (2014)

  19. Li, L., Alderson, D., Doyle, J.C., Willinger, W.: Towards a theory of scale-free graphs: definition, properties, and implications. Internet Math. 2(4), 431–523 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liben-Nowell, D., Kleinberg, J.M.: The link-prediction problem for social networks. J. Assoc. Inf. Sci. Technol. 58(7), 1019–1031 (2007)

    Article  Google Scholar 

  21. Newman, M.E.J.: Clustering and preferential attachment in growing networks. Phys. Rev. E 64, 025102 (2001)

    Article  Google Scholar 

  22. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Norros, I., Reittu, H.: On a conditionally Poissonian graph process. Adv. Appl. Probab. 38(1), 59–75 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Papadopoulos, F., Krioukov, D., Boguñá, M., Vahdat, A.: Greedy forwarding in dynamic scale-free networks embedded in hyperbolic metric spaces. In: 29th IEEE Conference on Computer Communications (INFOCOM), pp. 2973–2981 (2010)

  25. Penrose, M.D.: Random Geometric Graphs. Oxford University Press, Oxford (2003)

    Book  MATH  Google Scholar 

  26. Peter, U.: Random Graph Models for Complex Systems. PhD thesis, ETH Zürich (2014)

  27. Raab, M., Steger, A.: “Balls into bins”—a simple and tight analysis. In: 2nd International Workshop on Randomization and Computation (RANDOM), pp. 159–170 (1998)

  28. van der Hofstad, R.: Random Graphs and Complex Networks. Lecture notes http://www.win.tue.nl/~rhofstad/NotesRGCN.pdf (2016)

  29. Vázquez, A.: Growing network with local rules: preferential attachment, clustering hierarchy, and degree correlations. Phys. Rev. E 67(5), 056104 (2003)

    Article  Google Scholar 

  30. Wang, Y., Yeh, Y.-N.: Polynomials with real zeros and Pólya frequency sequences. J. Comb. Theory Ser. A 109(1), 63–74 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Krohmer.

Additional information

A preliminary conference version [12] appeared in the 34th IEEE INFOCOM (2015).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bläsius, T., Friedrich, T. & Krohmer, A. Cliques in Hyperbolic Random Graphs. Algorithmica 80, 2324–2344 (2018). https://doi.org/10.1007/s00453-017-0323-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-017-0323-3

Keywords