Abstract
Most complex real world networks display scale-free features. This characteristic motivated the study of numerous random graph models with a power-law degree distribution. There is, however, no established and simple model which also has a high clustering of vertices as typically observed in real data. Hyperbolic random graphs bridge this gap. This natural model has recently been introduced by Krioukov et al. (in Phys Rev E 82(3):036106, 2010) and has shown theoretically and empirically to fulfill all typical properties of real world networks, including power-law degree distribution and high clustering. We study cliques in hyperbolic random graphs G and present new results on the expected number of k-cliques \(\mathbb {E}\left[ K_k\right] \) and the size of the largest clique \(\omega (G)\). We observe that there is a phase transition at power-law exponent \(\beta = 3\). More precisely, for \(\beta \in (2,3)\) we prove \(\mathbb {E}\left[ K_k\right] =n^{k (3-\beta )/2} \varTheta (k)^{-k}\) and \(\omega (G)=\varTheta (n^{(3-\beta )/2})\), while for \(\beta \geqslant 3\) we prove \(\mathbb {E}\left[ K_k\right] =n \, \varTheta (k)^{-k} \) and \(\omega (G)=\varTheta (\log (n)/ \log \log n)\). Furthermore, we show that for \(\beta \geqslant 3\), cliques in hyperbolic random graphs can be computed in time \(\mathcal {O}(n)\). If the underlying geometry is known, cliques can be found with worst-case runtime \(\mathcal {O}(m \cdot n^{2.5})\) for all values of \(\beta \).
Similar content being viewed by others
References
Aiello, W., Chung, F.R.K., Lu, L.: A random graph model for massive graphs. In: 32nd Symposium Theory of Computing (STOC), pp. 171–180 (2000)
Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)
Bode, M., Fountoulakis, N., Müller, T.: The Probability that the Hyperbolic Random Graph is Connected. www.math.uu.nl/~Muell001/Papers/BFM.pdf (2014)
Boguñá, M., Papadopoulos, F., Krioukov, D.: Sustaining the internet with hyperbolic mapping. Nat. Commun. 1, 62 (2010)
Candellero, E., Fountoulakis, N.: Clustering and the hyperbolic geometry of complex networks. In: 11th International Workshop Algorithms and Models for the Web Graph (WAW), pp. 1–12 (2014)
Candellero, E., Fountoulakis, N.: Bootstrap percolation and the geometry of complex networks. Stoch. Process. Appl. 126(1), 234–264 (2016)
Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Ann. Discret. Math. 48, 165–177 (1991)
Diestel, R.: Graph Theory, 4th edn. Springer, Berlin (2012)
Dubhashi, D., Panconesi, A.: Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press, Cambridge (2009)
Fountoulakis, N.: On a geometrization of the Chung–Lu model for complex networks. J. Complex Netw. 3(3), 361–387 (2015)
Friedrich, T., Krohmer, A.: Parameterized clique on scale-free networks. In: 23rd International Symposium Algorithms and Computation (ISAAC), pp. 659–668 (2012)
Friedrich, T., Krohmer, A.: Cliques in hyperbolic random graphs. In: 34th IEEE Conference on Computer Communications (INFOCOM), pp. 1544–1552 (2015)
Gugelmann, L., Panagiotou, K., Peter, U.: Random hyperbolic graphs: degree sequence and clustering. In: 39th International Colloquium on Automata, Languages and Programming (ICALP), pp. 573–585 (2012)
Hopcroft, J.E., Karp, R.M.: An \(n^{5/2}\) algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2(4), 225–231 (1973)
Janson, S., Łuczak, T., Norros, I.: Large cliques in a power-law random graph. J. Appl. Probab. 47(4), 1124–1135 (2010)
Jensen, J.: Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math. 30(1), 175–193 (1906)
Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguñá, M.: Hyperbolic geometry of complex networks. Phys. Rev. E 82(3), 036106 (2010)
Leskovec, J., Krevl, A.: SNAP Datasets: Stanford Large Network Dataset Collection. http://snap.stanford.edu/data (2014)
Li, L., Alderson, D., Doyle, J.C., Willinger, W.: Towards a theory of scale-free graphs: definition, properties, and implications. Internet Math. 2(4), 431–523 (2005)
Liben-Nowell, D., Kleinberg, J.M.: The link-prediction problem for social networks. J. Assoc. Inf. Sci. Technol. 58(7), 1019–1031 (2007)
Newman, M.E.J.: Clustering and preferential attachment in growing networks. Phys. Rev. E 64, 025102 (2001)
Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)
Norros, I., Reittu, H.: On a conditionally Poissonian graph process. Adv. Appl. Probab. 38(1), 59–75 (2006)
Papadopoulos, F., Krioukov, D., Boguñá, M., Vahdat, A.: Greedy forwarding in dynamic scale-free networks embedded in hyperbolic metric spaces. In: 29th IEEE Conference on Computer Communications (INFOCOM), pp. 2973–2981 (2010)
Penrose, M.D.: Random Geometric Graphs. Oxford University Press, Oxford (2003)
Peter, U.: Random Graph Models for Complex Systems. PhD thesis, ETH Zürich (2014)
Raab, M., Steger, A.: “Balls into bins”—a simple and tight analysis. In: 2nd International Workshop on Randomization and Computation (RANDOM), pp. 159–170 (1998)
van der Hofstad, R.: Random Graphs and Complex Networks. Lecture notes http://www.win.tue.nl/~rhofstad/NotesRGCN.pdf (2016)
Vázquez, A.: Growing network with local rules: preferential attachment, clustering hierarchy, and degree correlations. Phys. Rev. E 67(5), 056104 (2003)
Wang, Y., Yeh, Y.-N.: Polynomials with real zeros and Pólya frequency sequences. J. Comb. Theory Ser. A 109(1), 63–74 (2005)
Author information
Authors and Affiliations
Corresponding author
Additional information
A preliminary conference version [12] appeared in the 34th IEEE INFOCOM (2015).
Rights and permissions
About this article
Cite this article
Bläsius, T., Friedrich, T. & Krohmer, A. Cliques in Hyperbolic Random Graphs. Algorithmica 80, 2324–2344 (2018). https://doi.org/10.1007/s00453-017-0323-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00453-017-0323-3