Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the Parameterized Complexity of Reconfiguration of Connected Dominating Sets

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

In a reconfiguration version of a decision problem \(\mathcal {Q}\) the input is an instance of \(\mathcal {Q}\) and two feasible solutions S and T. The objective is to determine whether there exists a step-by-step transformation between S and T such that all intermediate steps also constitute feasible solutions. In this work, we study the parameterized complexity of the Connected Dominating Set Reconfiguration problem (CDS-R). It was shown in previous work that the Dominating Set Reconfiguration problem (DS-R) parameterized by k, the maximum allowed size of a dominating set in a reconfiguration sequence, is fixed-parameter tractable on all graphs that exclude a biclique \(K_{d,d}\) as a subgraph, for some constant \(d \ge 1\). We show that the additional connectivity constraint makes the problem much harder, namely, that CDS-R is W[1]-hard parameterized by \(k+\ell \), the maximum allowed size of a dominating set plus the length of the reconfiguration sequence, already on 5-degenerate graphs. On the positive side, we show that CDS-R parameterized by k is fixed-parameter tractable, and in fact admits a polynomial kernel on planar graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. We note that the problem is easily shown to be slicewise polynomial parameterized for parameter \(k + \ell \) as one can guess each set in the reconfiguration sequence.

References

  1. Blum, J., Ding, M., Thaeler, A., Cheng, X.: Connected dominating set in sensor networks and MANETs, pp. 329–369 (2006). https://doi.org/10.1007/0-387-23830-1_8

  2. Cereceda, L., van den Heuvel, J., Johnson, M.: Connectedness of the graph of vertex-colourings. Discr. Math. 308(56), 913–919 (2008)

    Article  MathSciNet  Google Scholar 

  3. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)

    Article  MathSciNet  Google Scholar 

  4. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Berlin (2015). https://doi.org/10.1007/978-3-319-21275-3

  5. Dawar, A., Kreutzer, S.: Domination problems in nowhere-dense classes. In: IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2009, pp. 157–168 (2009)

  6. Demaine, E.D., O’Rourke, J.: Geometric Folding Algorithms—Linkages, Origami, Polyhedra. Cambridge University Press, Cambrige (2007)

  7. Drange, P.G., Dregi, M.S., Fomin, F.V., Kreutzer, S., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Reidl, F., Villaamil, F.S., Saurabh, S., Siebertz, S., Sikdar, S.: Kernelization and sparseness: the case of dominating set. In: 33rd Symposium on Theoretical Aspects of Computer Science, STACS 2016, pp. 31:1–31:14 (2016)

  8. Eiben, E., Kumar, M., Mouawad, A.E., Panolan, F., Siebertz, S.: Lossy kernels for connected dominating set on sparse graphs. In: 35th Symposium on Theoretical Aspects of Computer Science, STACS 2018, pp. 29:1–29:15 (2018)

  9. Eickmeyer, K., Giannopoulou, A.C., Kreutzer, S., Kwon, O., Pilipczuk, M., Rabinovich, R., Siebertz, S.: Neighborhood complexity and kernelization for nowhere dense classes of graphs. In: 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, pp. 63:1–63:14 (2017)

  10. Fabianski, G., Pilipczuk, M., Siebertz, S., Toruńczyk, S.: Progressive algorithms for domination and independence. In: 36th International Symposium on Theoretical Aspects of Computer Science, STACS 2019, pp. 27:1–27:16 (2019)

  11. Gajarský, J., Hlinený, P., Obdrzálek, J., Ordyniak, S., Reidl, F., Rossmanith, P., Villaamil, F.S., Sikdar, S.: Kernelization using structural parameters on sparse graph classes. J. Comput. Syst. Sci. 84, 219–242 (2017)

    Article  MathSciNet  Google Scholar 

  12. Gharibian, S., Sikora, J.: Ground state connectivity of local hamiltonians. In: Proceedings of the 42nd International Colloquium on Automata, Languages, and Programming, ICALP 2015, pp. 617–628 (2015)

  13. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectivity of Boolean satisfiability: computational and structural dichotomies. SIAM J. Comput. 38(6), 2330–2355 (2009)

    Article  MathSciNet  Google Scholar 

  14. Grohe, M., Kreutzer, S., Siebertz, S.: Deciding first-order properties of nowhere dense graphs. J. ACM (JACM) 64(3), 17 (2017)

    Article  MathSciNet  Google Scholar 

  15. Gupta, A., Kumar, A., Roughgarden, T.: Simpler and better approximation algorithms for network design. In: L.L. Larmore, M.X. Goemans (eds.) Proceedings of the 35th Annual ACM Symposium on Theory of Computing, June 9–11, 2003, San Diego, CA, USA, pp. 365–372. ACM (2003). https://doi.org/10.1145/780542.780597

  16. Haas, R., Seyffarth, K.: The k-dominating graph. Graphs Comb. 30(3), 609–617 (2014)

    Article  Google Scholar 

  17. Haddadan, A., Ito, T., Mouawad, A.E., Nishimura, N., Ono, H., Suzuki, A., Tebbal, Y.: The complexity of dominating set reconfiguration. Theor. Comput. Sci. 651, 37–49 (2016). https://doi.org/10.1016/j.tcs.2016.08.016

    Article  MathSciNet  MATH  Google Scholar 

  18. van den Heuvel, J.: The complexity of change. Surv. Comb. 409(2013), 127–160 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara, R., Uno, Y.: On the complexity of reconfiguration problems. Theor. Comput. Sci. 412(12–14), 1054–1065 (2011)

    Article  MathSciNet  Google Scholar 

  20. Ito, T., Kamiński, M., Demaine, E.D.: Reconfiguration of list edge-colorings in a graph. Discr. Appl. Math. 160(15), 2199–2207 (2012)

    Article  MathSciNet  Google Scholar 

  21. Johnson, W.W., Story, W.E.: Notes on the “15” puzzle. Am. J. Math. 2(4), 397–404 (1879)

  22. Kanj, I.A., Xia, G.: Flip distance is in FPT time o(n+ k * c\({\hat{\,}}\)k). In: 32nd International Symposium on Theoretical Aspects of Computer Science, STACS 2015, pp. 500–512 (2015)

  23. Kendall, G., Parkes, A.J., Spoerer, K.: A survey of NP-complete puzzles. ICGA J., pp. 13–34 (2008)

  24. Kreutzer, S., Rabinovich, R., Siebertz, S.: Polynomial kernels and wideness properties of nowhere dense graph classes. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, pp. 1533–1545 (2017)

  25. Lokshtanov, D., Mouawad, A.E., Panolan, F., Ramanujan, M.S., Saurabh, S.: Reconfiguration on sparse graphs. J. Comput. Syst. Sci. 95, 122–131 (2018)

    Article  MathSciNet  Google Scholar 

  26. Lubiw, A., Pathak, V.: Flip distance between two triangulations of a point set is NP-complete. Comput. Geom. 49, 17–23 (2015)

    Article  MathSciNet  Google Scholar 

  27. Mouawad, A.E.: On reconfiguration problems: structure and tractability (2015)

  28. Mouawad, A.E., Nishimura, N., Pathak, V., Raman, V.: Shortest reconfiguration paths in the solution space of Boolean formulas. In: Automata, Languages, and Programming—42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6–10, 2015, Proceedings, Part I, pp. 985–996 (2015)

  29. Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the parameterized complexity of reconfiguration problems. Algorithmica 78(1), 274–297 (2017)

    Article  MathSciNet  Google Scholar 

  30. Nadara, W., Pilipczuk, M., Rabinovich, R., Reidl, F., Siebertz, S.: Empirical evaluation of approximation algorithms for generalized graph coloring and uniform quasi-wideness. In: 17th International Symposium on Experimental Algorithms, SEA 2018, pp. 14:1–14:16 (2018)

  31. Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4), 52 (2018)

  32. Pilipczuk, M., Siebertz, S., Toruńczyk, S.: On the number of types in sparse graphs. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, pp. 799–808. ACM (2018)

  33. Siebertz, S.: Reconfiguration on nowhere dense graph classes. Electr. J. Comb. 25(3), P3.24 (2018)

  34. Suzuki, A., Mouawad, A.E., Nishimura, N.: Reconfiguration of dominating sets. J. Comb. Optim. 32(4), 1182–1195 (2016)

    Article  MathSciNet  Google Scholar 

  35. Swamy, C., Kumar, A.: Primal-dual algorithms for connected facility location problems. In: Jansen, K., Leonardi, S., Vazirani, V. (eds.) Approximation Algorithms for Combinatorial Optimization, pp. 256–270. Springer, Berlin (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amer E. Mouawad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A preliminary version of this paper was accepted for publication at the 15th International Symposium on Parameterized and Exact Computation, IPEC 2020, December 14–18, 2020, Hong Kong, China. The second author is supported by URB project “A theory of change through the lens of reconfiguration”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lokshtanov, D., Mouawad, A.E., Panolan, F. et al. On the Parameterized Complexity of Reconfiguration of Connected Dominating Sets. Algorithmica 84, 482–509 (2022). https://doi.org/10.1007/s00453-021-00909-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-021-00909-5

Keywords