Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Asymptotically Improved Upper Bound on the Diameter of Polyhedra

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Kalai and Kleitman proved in 1992 that the maximum possible diameter of a d-dimensional polyhedron with n facets is at most \(n^{2+ \log _2 d}\). In 2014, Todd improved the Kalai–Kleitman bound to \((n-d)^{\log _2 d}\). Todd’s bound is tight for \(d \le 2\), and has been improved for \(d \ge 3\) in subsequent studies. The current best upper bound is, however, still in the form of \((n-d)^{\log _2 \mathrm{O}(d )}\). In this paper, we show an asymptotically improved upper bound of \((n-d)^{\log _2 \mathrm{O}(d/{\log }\, d )}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonifas, N., Di Summa, M., Eisenbrand, F., Hähnle, N., Niemeier, M.: On sub-determinants and the diameter of polyhedra. Discrete Comput. Geom. 52(1), 102–115 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bremner, D., Deza, A., Hua, W., Schewe, L.: More bounds on the diameters of convex polytopes. Optim. Methods Softw. 28(3), 442–450 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dadush, D., Hähnle, N.: On the Shadow Simplex method for curved polyhedra. Discrete Comput. Geom. 56(4), 882–909 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press, Princeton (1963)

    Book  MATH  Google Scholar 

  5. Del Pia, A., Michini, C.: On the diameter of lattice polytopes. Discrete Comput. Geom. 55(3), 681–687 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Deza, A., Lionel, P.: Improved bounds on the diameter of lattice polytopes. Acta Math. Hungar. 154(2), 457–469 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Deza, A., Manoussakis, G., Onn, S.: Primitive zonotopes. Discrete Comput. Geom. 60(1), 27–39 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dyer, M., Frieze, A.: Random walks, totally unimodular matrices, and a randomised dual simplex algorithm. Math. Progr. Ser. A 64(1), 1–16 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eisenbrand, F., Hähnle, N., Razborov, A., Rothvoß, T.: Diameter of polyhedra: limits of abstraction. Math. Oper. Res. 35(4), 786–794 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gallagher, J.M., Kim, E.D.: An improved upper bound on the diameters of subset partition graphs (2014). arXiv:1412.5691

  11. Kalai, G.: Linear programming, the simplex algorithm and simple polytopes. Math. Progr. Ser. B 79(1–3), 217–233 (1997)

    MathSciNet  MATH  Google Scholar 

  12. Kalai, G.: Polytope skeletons and paths (preliminary version). In: Goodman, J.E. (ed.) Handbook of Discrete and Computational Geometry, 3rd edn. CRC Press, Boca Raton (2017). http://www.csun.edu/~ctoth/Handbook/chap19.pdf

  13. Kalai, G., Kleitman, D.J.: A quasi-polynomial bound for the diameter of graphs of polyhedra. Bull. Am. Math. Soc. 26(2), 315–316 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kim, E.D.: Polyhedral graph abstractions and an approach to the Linear Hirsch conjecture. Math. Progr. Ser. A 143(1–2), 357–370 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Klee, V.: Diameters of polyhedral graphs. Canad. J. Math. 16, 602–614 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  16. Klee, V.: Paths on polyhedra. I. J. Soc. Ind. Appl. Math. 13, 946–956 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  17. Klee, V.: Paths on polyhedra II. Pac. J. Math. 17, 249–262 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  18. Klee, V., Walkup, D.W.: The \(d\)-step conjecture for polyhedra of dimension \(d < 6\). Acta Math. 117, 53–78 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kleinschmidt, P., Onn, S.: On the diameter of convex polytopes. Discrete Math. 102(1), 75–77 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Labbé, J.-P., Manneville, T., Santos, F.: Hirsch polytopes with exponentially long combinatorial segments. Math. Progr. Ser. A 165(2), 663–688 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Larman, D.G.: Paths of polytopes. Proc. London Math. Soc. 20, 161–178 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  22. Matschke, B., Santos, F., Weibel, C.: The width of five-dimensional prismatoids. Proc. Lond. Math. Soc. 110(3), 647–672 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mizuno, S., Sukegawa, N., Deza, A.: A primal-simplex based Tardos’ algorithm. Oper. Res. Lett. 43(6), 625–628 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Naddef, D.: The Hirsch conjecture is true for \((0,1)\)-polytopes. Math. Progr. Ser. B 45(1), 109–110 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Santos, F.: A counterexample to the Hirsch Conjecture. Ann. Math. 176(1), 383–412 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Santos, F.: Recent progress on the combinatorial diameter of polytopes and simplicial complexes. TOP 21(3), 426–460 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Smale, S.: Mathematical problems for the next century. In: Arnold, V., et al. (eds.) Mathematics: Frontiers and Perspectives, pp. 271–294. American Mathematics Society, Providence (2000)

    Google Scholar 

  28. Sukegawa, N.: Improving bounds on the diameter of a polyhedron in high dimensions. Discrete Math. 340(9), 2134–2142 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sukegawa, N., Kitahara, T.: A refinement of Todd’s bound for the diameter of a polyhedron. Oper. Res. Lett. 43(5), 534–536 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Todd, M.J.: An improved Kalai–Kleitman bound for the diameter of a polyhedron. SIAM J. Discrete Math. 28(4), 1944–1947 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ziegler, G.M.: Who Solved the Hirsch Conjecture? Doc. Math. Extra Volume: Optim. Stories 75–85 (2012)

Download references

Acknowledgements

The author is grateful to Kazuo Murota and Yoshio Okamoto for stimulating this study. The author is also grateful to Antoine Deza, Yuya Higashikawa, Lionel Pournin, and two anonymous referees for their helpful comments. This research is supported in part by Grant-in-Aid for Science Research (A) 26242027.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriyoshi Sukegawa.

Additional information

Editor in Charge: János Pach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukegawa, N. An Asymptotically Improved Upper Bound on the Diameter of Polyhedra. Discrete Comput Geom 62, 690–699 (2019). https://doi.org/10.1007/s00454-018-0016-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-018-0016-y

Keywords

Mathematics Subject Classification