Abstract
In this article we discuss classic theorems from Convex Geometry in the context of topological drawings and beyond. In a simple topological drawing of the complete graph \(K_n\), any two edges share at most one point: either a common vertex or a point where they cross. Triangles of simple topological drawings can be viewed as convex sets. This gives a link to convex geometry. As our main result, we present a generalization of Kirchberger’s theorem that is of purely combinatorial nature. It turned out that this classic theorem also applies to “generalized signotopes”—a combinatorial generalization of simple topological drawings, which we introduce and investigate in the course of this article. As indicated by their name they are a generalization of signotopes, a structure studied in the context of encodings for arrangements of pseudolines. We also present a family of simple topological drawings with arbitrarily large Helly number, and a new proof of a topological generalization of Carathéodory’s theorem in the plane and discuss further classic theorems from Convex Geometry in the context of simple topological drawings.
Similar content being viewed by others
Notes
The authors of [8] use the term face-convex instead of cell-convex.
References
Ábrego, B., Aichholzer, O., Fernández-Merchant, S., Hackl, T., Pammer, J., Pilz, A., Ramos, P., Salazar, G., Vogtenhuber, B.: All good drawings of small complete graphs. In: 31th European Workshop on Computational Geometry (Ljubljana 2015). Book of Abstracts, pp. 57–60. http://eurocg15.fri.uni-lj.si/pub/eurocg15-book-of-abstracts.pdf
Aichholzer, O., Hackl, T., Pilz, A., Salazar, G., Vogtenhuber, B.: Deciding monotonicity of good drawings of the complete graph. In: 16th Spanish Meeting on Computational Geometry (Barcelona 2015), pp. 33–36 (2015)
Alon, N., Kleitman, D.J.: Piercing convex sets and the Hadwiger–Debrunner \((p, q)\)-problem. Adv. Math. 96(1), 103–112 (1992)
Arocha, J.L., Bárány, I., Bracho, J., Fabila, R., Montejano, L.: Very colorful theorems. Discrete Comput. Geom. 42(2), 142–154 (2009)
Arroyo, A., Bensmail, J., Richter, R.B.: Extending drawings of graphs to arrangements of pseudolines. In: 36th International Symposium on Computational Geometry. Leibniz Int. Proc. Inform., vol. 164, # 9. Leibniz-Zent. Inform., Wadern (2020)
Arroyo, A., McQuillan, D., Richter, R.B., Salazar, G.: Drawings of \(K_n\) with the same rotation scheme are the same up to triangle-flips (Gioan’s theorem). Aust. J. Comb. 67, 131–144 (2017)
Arroyo, A., McQuillan, D., Richter, R.B., Salazar, G.: Levi’s lemma, pseudolinear drawings of \(K_n\), and empty triangles. J. Graph Theory 87(4), 443–459 (2018)
Arroyo, A., McQuillan, D., Richter, R.B., Salazar, G.: Convex drawings of the complete graph: topology meets geometry. Ars Mathematica Contemporanea (2021). https://doi.org/10.26493/1855-3974.2134.ac9
Arroyo, A., Richter, R.B., Sunohara, M.: Extending drawings of complete graphs into arrangements of pseudocircles. SIAM J. Discrete Math. 35(2), 1050–1076 (2021)
Bachem, A., Wanka, A.: Separation theorems for oriented matroids. Discrete Math. 70(3), 303–310 (1988)
Bachem, A., Wanka, A.: Euclidean intersection properties. J. Comb. Theory Ser. B 47(1), 10–19 (1989)
Balko, M., Fulek, R., Kynčl, J.: Crossing numbers and combinatorial characterization of monotone drawings of \(K_n\). Discrete Comput. Geom. 53(1), 107–143 (2015)
Bárány, I.: A generalization of Carathéodory’s theorem. Discrete Math. 40(2–3), 141–152 (1982)
Bárány, I., Shlosman, S.B., Szücs, A.: On a topological generalization of a theorem of Tverberg. J. Lond. Math. Soc. 23(1), 158–164 (1981)
Bárány, I., Soberón, P.: Tverberg’s theorem is 50 years old: a survey. Bull. Am. Math. Soc. 55(4), 459–492 (2018)
Barvinok, A.: A Course in Convexity. Graduate Studies in Mathematics, vol. 54. American Mathematical Society, Providence (2002)
Björner, A., Las Vergnas, M., Sturmfels, B., White, N., Ziegler, G.M.: Oriented Matroids. Encyclopedia of Mathematics and Its Applications, vol. 46. Cambridge University Press, Cambridge (1999)
Chung, F.R.K., Graham, R.L., Frankl, P., Shearer, J.B.: Some intersection theorems for ordered sets and graphs. J. Comb. Theory Ser. A 43(1), 23–37 (1986)
Felsner, S., Goodman, J.E.: Pseudoline arrangements. In: Handbook of Discrete and Computational Geometry, 3rd ed., pp. 125–157 (chapter 5). CRC Press, Boca Raton (2018)
Felsner, S., Weil, H.: Sweeps, arrangements and signotopes. Discrete Appl. Math. 109(1–2), 67–94 (2001)
Frick, F., Soberón, P.: The topological Tverberg problem beyond prime powers (2020). arXiv:2005.05251
Gioan, E.: Complete graph drawings up to triangle mutations. Discrete Comput. Geom. 67(4), 985–1022 (2022)
Goaoc, X., Paták, P., Patáková, Z., Tancer, M., Wagner, U.: Bounding Helly numbers via Betti numbers. In: A Journey Through Discrete Mathematics, pp. 407–447. Springer, Cham (2017)
Goodman, J.E., Pollack, R.: Helly-type theorems for pseudoline arrangements in \({ P}^{2}\). J. Comb. Theory Ser. A 32(1), 1–19 (1982)
Guy, R.K.: Crossing numbers of graphs. In: Graph Theory and Applications (Kalamazoo 1972). Lecture Notes in Mathematics, vol. 303, pp. 111–124. Springer, Berlin (1972)
Helly, E.: Über Systeme von abgeschlossenen Mengen mit gemeinschaftlichen Punkten. Monatsh. Math. Phys. 37(1), 281–302 (1930)
Holmsen, A.F.: The intersection of a matroid and an oriented matroid. Adv. Math. 290, 1–14 (2016)
Holmsen, A.F., Pach, J., Tverberg, H.: Points surrounding the origin. Combinatorica 28(6), 633–644 (2008)
Kalai, G.: Colorful Caratheodory revisited (2009). http://gilkalai.wordpress.com/2009/03/15/colorful-caratheodory-revisited
Kalai, G., Meshulam, R.: A topological colorful Helly theorem. Adv. Math. 191(2), 305–311 (2005)
Keller, Ch., Smorodinsky, Sh., Tardos, G.: Improved bounds on the Hadwiger–Debrunner numbers. Isr. J. Math. 225(2), 925–945 (2018)
Kirchberger, P.: Über Tchebychefsche Annäherungsmethoden. Math. Ann. 57(4), 509–540 (1903)
Kynčl, J.: Improved enumeration of simple topological graphs. Discrete Comput. Geom. 50(3), 727–770 (2013)
Kynčl, J.: Simple realizability of complete abstract topological graphs simplified. Discrete Comput. Geom. 64(1), 1–27 (2020)
Özaydin, M.: Equivariant maps for the symmetric group (1987). https://minds.wisconsin.edu/handle/1793/63829
Pach, J., Tóth, G.: How many ways can one draw a graph? Combinatorica 26(5), 559–576 (2006)
Pammer, J.: Rotation Systems and Good Drawings. MSc thesis, Graz University of Technology (2014). http://diglib.tugraz.at/rotation-systems-and-good-drawings-2014
Patáková, Z.: Bounding radon number via Betti numbers. In: 36th International Symposium on Computational Geometry. Leibniz Int. Proc. Inform., vol. 164, # 61. Leibniz-Zent. Inform., Wadern (2020)
Roudneff, J.-P.: Tverberg-type theorems for pseudoconfigurations of points in the plane. Eur. J. Comb. 9(2), 189–198 (1988)
Author information
Authors and Affiliations
Corresponding author
Additional information
Editor in Charge: Csaba D. Tóth
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
We thank Alan Arroyo, Emo Welzl, Heiko Harborth, and Geza Tóth for inspiring discussions and the reviewers for helpful comments. A special thanks goes to Patrick Schnider for his simplification of the construction in the proof of Proposition 3. R. Steiner and H. Bergold were funded by DFG-GRK 2434. S. Felsner and M. Scheucher were supported by the DFG Grant FE 340/12-1. M. Scheucher was supported by the DFG Grant SCHE 2214/1-1 and by the internal research funding “Post-Doc-Funding” from Technische Universität Berlin.
Rights and permissions
About this article
Cite this article
Bergold, H., Felsner, S., Scheucher, M. et al. Topological Drawings Meet Classical Theorems from Convex Geometry. Discrete Comput Geom 70, 1121–1143 (2023). https://doi.org/10.1007/s00454-022-00408-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00454-022-00408-6
Keywords
- Topological drawing
- Kirchberger’s theorem
- Carathéodory’s theorem
- Helly’s theorem
- Convexity hierarchy
- Generalized signotope