Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Non-Existence of Annular Separators in Geometric Graphs

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Benjamini and Papasoglou (2011) showed that planar graphs with uniform polynomial volume growth admit 1-dimensional annular separators: The vertices at graph distance R from any vertex can be separated from those at distance 2R by removing at most O(R) vertices. They asked whether geometric d-dimensional graphs with uniform polynomial volume growth similarly admit \((d-1)\)-dimensional annular separators when \(d>2\). We show that this fails in a strong sense: For any \(d\geqslant 3\) and every \(s\geqslant 1\), there is a collection of interior-disjoint spheres in \(\mathbb {R}^d\) whose tangency graph G has uniform polynomial growth, but such that all annular separators in G have cardinality at least \(R^s\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Depiction of a random triangulation is due to Nicolas Curien.

References

  1. Angel, O.: Growth and percolation on the uniform infinite planar triangulation. Geom. Funct. Anal. 13(5), 935–974 (2003)

    Article  MathSciNet  Google Scholar 

  2. Bonk, M., Kleiner, B.: Quasisymmetric parametrizations of two-dimensional metric spheres. Invent. Math. 150(1), 127–183 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  3. Benjamini, I., Papasoglu, P.: Growth and isoperimetric profile of planar graphs. Proc. Am. Math. Soc. 139(11), 4105–4111 (2011)

    Article  MathSciNet  Google Scholar 

  4. Benjamini, I., Schramm, O.: Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6, \(\#\,23\) (2001)

  5. Ding, J., Gwynne, E.: The fractal dimension of Liouville quantum gravity: universality, monotonicity, and bounds. Commun. Math. Phys. 374(3), 1877–1934 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  6. Ebrahimnejad, F., Lee, J.R.: On planar graphs of uniform polynomial growth. Probab. Theory Relat. Fields 180(3–4), 955–984 (2021)

    Article  MathSciNet  Google Scholar 

  7. Gwynne, E., Holden, N., Sun, X.: A mating-of-trees approach for graph distances in random planar maps. Probab. Theory Relat. Fields 177(3–4), 1043–1102 (2020)

    Article  MathSciNet  Google Scholar 

  8. Krikun, M.A.: Uniform infinite planar triangulation and related time-reversed critical branching process. J. Math. Sci. 131(2), 5520–5537 (2005)

    Article  MathSciNet  Google Scholar 

  9. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36(2), 177–189 (1979)

    Article  MathSciNet  Google Scholar 

  10. Miller, G.L., Teng, Sh.-H., Thurston, W., Vavasis, S.A.: Separators for sphere-packings and nearest neighbor graphs. J. ACM 44(1), 1–29 (1997)

    Article  MathSciNet  Google Scholar 

  11. Miller, G.L., Teng, Sh.-H., Thurston, W., Vavasis, S.A.: Geometric separators for finite-element meshes. SIAM J. Sci. Comput. 19(2), 364–386 (1998)

    Article  MathSciNet  Google Scholar 

  12. Plotkin, S., Rao, S., Smith, W.D.: Shallow excluded minors and improved graph decompositions. In: 5th Annual ACM-SIAM Symposium on Discrete Algorithms (Arlington 1994), pp. 462–470. ACM, New York (1994)

  13. Spielman, D.A., Teng, Sh.-H.: Spectral partitioning works: planar graphs and finite element meshes. Linear Algebra Appl. 421(2–3), 284–305 (2007)

    Article  MathSciNet  Google Scholar 

  14. Teng, Sh.-H.: Combinatorial aspects of geometric graphs. Comput. Geom. 9(4), 277–287 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was partially supported by NSF CCF-2007079 and a Simons Investigator Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Lee.

Additional information

Editor in Charge: János Pach

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimnejad, F., Lee, J.R. Non-Existence of Annular Separators in Geometric Graphs. Discrete Comput Geom 71, 627–645 (2024). https://doi.org/10.1007/s00454-023-00519-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-023-00519-8

Keywords

Mathematics Subject Classification