Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Spiraling and Folding: The Topological View

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

For every n, we construct two arcs in the plane that intersect at least n times and do not form spirals. The construction is in three stages: we first exhibit two closed curves on the torus that do not form double spirals, then two arcs on the torus that do not form spirals, and finally two arcs in the plane that do not form spirals. The planar arcs provide a counterexample to a proof of Pach and Tóth concerning string graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. The problem is decidable on arbitrary surfaces, as shown in [10].

  2. We refer the reader to [3, 4, 16] for a basic reference on the topology of surfaces.

  3. Two curves are homotopic if they can be continuously deformed into each other.

References

  1. Alspach, B., Hell, P., Miller, D.J. (eds.): Algorithmic Aspects of Combinatorics, pp. 1– 245. North-Holland Publishing Co., Amsterdam ( 1978). Conference held at the Qualicum College Inn, Vancouver Island, B.C., May 17–21, 1976, Ann. Discrete Math. 2 (1978)

  2. Benzer, S.: On the topology of the genetic fine structure. Proc. Natl. Acad. Sci. 45, 1607–1620 (1959)

    Article  Google Scholar 

  3. Colin de Verdière, É.: Computational topology of graphs on surfaces. In: Goodman, J.E., O’Rourke, J., Tóth, C.D. (eds.) Handbook of Discrete and Computational Geometry, 3rd edn. Discrete Mathematics and its Applications (Boca Raton), p. 1927. CRC Press, Boca Raton (2018)

  4. Farb, B., Margalit, D.: A Primer on Mapping Class Groups. Princeton Mathematical Series, vol. 49, p. 472. Princeton University Press, Princeton, NJ (2012). https://doi.org/10.1515/9781400839049

  5. Graham, R.L.: Problem 1. In: Open Problems at 5th Hungarian Colloquium on Combinatorics (1976)

  6. Hatcher, A.: Algebraic Topology, p. 544. Cambridge University Press, Cambridge (2002). https://doi.org/10.1017/S0013091503214620

  7. Kratochvíl, J., Matoušek, J.: String graphs requiring exponential representations. J. Comb. Theory Ser. B 53(1), 1–4 (1991). https://doi.org/10.1016/0095-8956(91)90050-T

    Article  MathSciNet  Google Scholar 

  8. Pach, J., Tóth, G.: Recognizing string graphs is decidable. Discrete Comput. Geom. 28(4), 593–606 (2002). https://doi.org/10.1007/3-540-45848-4_20

    Article  MathSciNet  Google Scholar 

  9. Penner, R.C., Harer, J.L.: Combinatorics of Train Tracks. Annals of Mathematics Studies, vol. 125, p. 216. Princeton University Press, Princeton, NJ (1992). https://doi.org/10.1515/9781400882458

  10. Schaefer, M., Sedgwick, E., Štefankovič, D.: Recognizing string graphs in NP. J. Comput. Syst. Sci. 67(2), 365–380 (2003). https://doi.org/10.1016/S0022-0000(03)00045-X

    Article  MathSciNet  Google Scholar 

  11. Schaefer, M., Štefankovič, D.: Decidability of string graphs. J. Comput. Syst. Sci. 68(2), 319–334 (2004). https://doi.org/10.1016/j.jcss.2003.07.002

    Article  MathSciNet  Google Scholar 

  12. Schaefer, M., Sedgwick, E., Štefankovič, D.: Spiralling and folding: the topological view. In: Bose, P. (ed.) Proceedings of the 19th Annual Canadian Conference on Computational Geometry, CCCG 2007, August 20–22, 2007, Carleton University, Ottawa, Canada, pp. 73– 76 (2007)

  13. Schaefer, M., Sedgwick, E., Štefankovič, D.: Spiraling and folding: the word view. Algorithmica 60(3), 609–626 (2011). https://doi.org/10.1007/s00453-009-9362-8

    Article  MathSciNet  Google Scholar 

  14. Sinden, F.W.: Topology of thin film circuits. Bell Syst. Tech. J. 45, 1639–1662 (1966)

    Article  Google Scholar 

  15. Štefankovič, D.: Algorithms for simple curves on surfaces, string graphs, and crossing numbers. PhD thesis, University of Chicago, Chicago, IL, USA (2005)

  16. Stillwell, J.: Classical Topology and Combinatorial Group Theory, 2nd edn. Graduate Texts in Mathematics, vol. 72, p. 334. Springer, New York (1993). https://doi.org/10.1007/978-1-4612-4372-4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Schaefer.

Additional information

Editor in Charge: János Pach

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

An earlier version of this paper appeared in the proceedings of the 19th Canadian Conference on Computational Geometry [12]

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kynčl, J., Schaefer, M., Sedgwick, E. et al. Spiraling and Folding: The Topological View. Discrete Comput Geom 72, 246–268 (2024). https://doi.org/10.1007/s00454-023-00603-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-023-00603-z

Keywords

Mathematics Subject Classification