Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Defining digital surgery: a SAGES white paper

  • SAGES/EAES Official Publication
  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

Digital surgery is a new paradigm within the surgical innovation space that is rapidly advancing and encompasses multiple areas.

Methods

This white paper from the SAGES Digital Surgery Working Group outlines the scope of digital surgery, defines key terms, and analyzes the challenges and opportunities surrounding this disruptive technology.

Results

In its simplest form, digital surgery inserts a computer interface between surgeon and patient. We divide the digital surgery space into the following elements: advanced visualization, enhanced instrumentation, data capture, data analytics with artificial intelligence/machine learning, connectivity via telepresence, and robotic surgical platforms. We will define each area, describe specific terminology, review current advances as well as discuss limitations and opportunities for future growth.

Conclusion

Digital Surgery will continue to evolve and has great potential to bring value to all levels of the healthcare system. The surgical community has an essential role in understanding, developing, and guiding this emerging field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Atallah S (ed) (2020) Digital surgery, 1st edn. Springer, Cham

    Google Scholar 

  2. Guanà R, Ferrero L, Garofalo S, Cerrina A, Cussa D, Arezzo A et al (2017) Skills comparison in pediatric residents using a 2-dimensional versus a 3-dimensional high-definition camera in a pediatric laparoscopic simulator. J Surg Educ 74(4):644–649. https://doi.org/10.1016/j.jsurg.2016.12.002

    Article  PubMed  Google Scholar 

  3. Tanagho YS, Andriole GL, Paradis AG, Madison KM, Sandhu GS, Varela JE et al (2012) 2D versus 3D visualization: impact on laparoscopic proficiency using the fundamentals of laparoscopic surgery skill set. J Laparoendosc Adv Surg Tech A 22(9):865–870. https://doi.org/10.1089/lap.2012.0220

    Article  PubMed  Google Scholar 

  4. Reinhart MB, Huntington CR, Blair LJ, Heniford BT, Augenstein VA (2016) Indocyanine green: historical context, current applications, and future considerations. Surg Innov 23(2):166–175. https://doi.org/10.1177/1553350615604053

    Article  PubMed  Google Scholar 

  5. Broderick RC, Lee AM, Cheverie JN, Zhao B, Blitzer RR, Patel RJ et al (2021) Fluorescent cholangiography significantly improves patient outcomes for laparoscopic cholecystectomy. Surg Endosc 35(10):5729–5739. https://doi.org/10.1007/s00464-020-08045-x

    Article  PubMed  Google Scholar 

  6. Blanco-Colino R, Espin-Basany E (2018) Intraoperative use of ICG fluorescence imaging to reduce the risk of anastomotic leakage in colorectal surgery: a systematic review and meta-analysis. Tech Coloproctol 22(1):15–23. https://doi.org/10.1007/s10151-017-1731-8

    Article  CAS  PubMed  Google Scholar 

  7. Gupta A, Ruijters D, Flexman ML (2021) Augmented reality for interventional procedures. Digital surgery. Springer, Cham

    Google Scholar 

  8. Shuhaiber JH (2004) Augmented reality in surgery. Arch Surg 139(2):170–174. https://doi.org/10.1001/archsurg.139.2.170

    Article  PubMed  Google Scholar 

  9. Ajstefansic JH (1999) Image-guided surgery: preliminary feasibility studies of frameless stereotactic liver surgery. Arch Surg 134(6):644–650

    Article  Google Scholar 

  10. Mountney P, Yang G-Z (2010) Motion compensated SLAM for image guided surgery. Med Image Comput Comput Assist Interv 13(Pt 2):496–504. https://doi.org/10.1007/978-3-642-15745-5_61

    Article  PubMed  Google Scholar 

  11. Bernhardt S, Nicolau SA, Soler L, Doignon C (2017) The status of augmented reality in laparoscopic surgery as of 2016. Med Image Anal 37:66–90. https://doi.org/10.1016/j.media.2017.01.007

    Article  PubMed  Google Scholar 

  12. Gmeiner M, Dirnberger J, Fenz W, Gollwitzer M, Wurm G, Trenkler J et al (2018) Virtual cerebral aneurysm clipping with real-time haptic force feedback in neurosurgical education. World Neurosurg 112:e313–e323. https://doi.org/10.1016/j.wneu.2018.01.042

    Article  PubMed  Google Scholar 

  13. Gsaxner C (2021) Augmented reality in oral and maxillofacial surgery. Computer-aided oral and maxillofacial surgery. Academic Press, Cambridge

    Google Scholar 

  14. Kang X, Azizian M, Wilson E, Wu K, Martin AD, Kane TD et al (2014) Stereoscopic augmented reality for laparoscopic surgery. Surg Endosc 28(7):2227–2235. https://doi.org/10.1007/s00464-014-3433-x

    Article  PubMed  Google Scholar 

  15. Xin B, Huang X, Wan W, Lv K, Hu Y, Wang J et al (2020) The efficacy of immersive virtual reality surgical simulator training for pedicle screw placement: a randomized double-blind controlled trial. Int Orthop 44(5):927–934. https://doi.org/10.1007/s00264-020-04488-y

    Article  PubMed  Google Scholar 

  16. Gavaghan KA, Peterhans M, Oliveira-Santos T, Weber S (2011) A portable image overlay projection device for computer-aided open liver surgery. IEEE Trans Biomed Eng 58(6):1855–1864. https://doi.org/10.1109/TBME.2011.2126572

    Article  PubMed  Google Scholar 

  17. Reitinger B, Bornik A, Beichel R, Schmalstieg D (2006) Liver surgery planning using virtual reality. IEEE Comput Graph Appl 26(6):36–47. https://doi.org/10.1109/mcg.2006.131

    Article  PubMed  Google Scholar 

  18. Wendler T, Herrmann K, Schnelzer A, Lasser T, Traub J, Kutter O et al (2010) First demonstration of 3-D lymphatic mapping in breast cancer using freehand SPECT. Eur J Nucl Med Mol Imaging 37(8):1452–1461. https://doi.org/10.1007/s00259-010-1430-4

    Article  PubMed  Google Scholar 

  19. RSIP Vision (2023) RSIP Neph announces a revolutionary intra-op solution for partial nephrectomy surgeries. PR Newswire. https://www.prnewswire.com/news-releases/rsip-neph-announces-a-revolutionary-intra-op-solution-for-partial-nephrectomy-surgeries-301731484.html. Accessed 19 Mar 2023

  20. Shah SK, Nwaiwu CA, Agarwal A, Bajwa KS, Felinski M, Walker PA et al (2021) First-in-human (FIH) safety, feasibility, and usability trial of a laparoscopic imaging device using laser speckle contrast imaging (LSCI) visualizing real-time tissue perfusion and blood flow without fluorophore in colorectal and bariatric patients. J Am Coll Surg 233(5):S45–S46. https://doi.org/10.1016/j.jamcollsurg.2021.07.070

    Article  Google Scholar 

  21. Vávra P, Roman J, Zonča P, Ihnát P, Němec M, Kumar J et al (2017) Recent development of augmented reality in surgery: a review. J Healthc Eng 2017:1–9. https://doi.org/10.1155/2017/4574172

    Article  Google Scholar 

  22. Pratt P, Stoyanov D, Visentini-Scarzanella M, Yang G-Z (2010) Dynamic guidance for robotic surgery using image-constrained biomechanical models. Med Image Comput Comput Assist Interv 13(Pt 1):77–85. https://doi.org/10.1007/978-3-642-15705-9_10

    Article  PubMed  Google Scholar 

  23. Condino S, Carbone M, Piazza R, Ferrari M, Ferrari V (2020) Perceptual limits of optical see-through visors for augmented reality guidance of manual tasks. IEEE Trans Biomed Eng 67(2):411–419. https://doi.org/10.1109/TBME.2019.2914517

    Article  PubMed  Google Scholar 

  24. Edwards PJ, Chand M, Birlo M, Stoyanov D (2021) The challenge of augmented reality in surgery. In: Digital surgery. Springer, Cham, pp 121–135

    Chapter  Google Scholar 

  25. Dario P, Hannaford B, Menciassi A (2003) Smart surgical tools and augmenting devices. IEEE Trans Rob Autom 19(5):782–792. https://doi.org/10.1109/tra.2003.817071

    Article  Google Scholar 

  26. Gaidry AD, Tremblay L, Nakayama D, Ignacio RC Jr (2019) The history of surgical staplers: a combination of Hungarian, Russian, and American innovation. Am Surg 85(6):563–566. https://doi.org/10.1177/000313481908500617

    Article  PubMed  Google Scholar 

  27. Kim J-S, Park S-H, Kim N-S, Lee IY, Jung HS, Ahn H-M et al (2022) Compression automation of circular stapler for preventing compression injury on gastrointestinal anastomosis. Int J Med Robot 18(3):e2374. https://doi.org/10.1002/rcs.2374

    Article  PubMed  PubMed Central  Google Scholar 

  28. Roy S, Yoo A, Yadalam S, Fegelman EJ, Kalsekar I, Johnston SS (2017) Comparison of economic and clinical outcomes between patients undergoing laparoscopic bariatric surgery with powered versus manual endoscopic surgical staplers. J Med Econ 20(4):423–433. https://doi.org/10.1080/13696998.2017.1296453

    Article  PubMed  Google Scholar 

  29. Pla-Martí V, Martín-Arévalo J, Moro-Valdezate D, García-Botello S, Mora-Oliver I, Gadea-Mateo R et al (2021) Impact of the novel powered circular stapler on risk of anastomotic leakage in colorectal anastomosis: a propensity score-matched study. Tech Coloproctol 25(3):279–284. https://doi.org/10.1007/s10151-020-02338-y

    Article  PubMed  Google Scholar 

  30. Pollack E, Johnston S, Petraiuolo WJ, Roy S, Galvain T (2021) Economic analysis of leak complications in anastomoses performed with powered versus manual circular staplers in left-sided colorectal resections: a US-based cost analysis. Clinicoecon Outcomes Res 13:531–540. https://doi.org/10.2147/ceor.s305296

    Article  PubMed  PubMed Central  Google Scholar 

  31. Levy B, Emery L (2003) Randomized trial of suture versus electrosurgical bipolar vessel sealing in vaginal hysterectomy. Obstet Gynecol 102(1):147–151. https://doi.org/10.1016/s0029-7844(03)00405-8

    Article  PubMed  Google Scholar 

  32. Sutton C, Abbott J (2013) History of power sources in endoscopic surgery. J Minim Invasive Gynecol 20(3):271–278. https://doi.org/10.1016/j.jmig.2013.03.001

    Article  PubMed  Google Scholar 

  33. Singleton D, Chekan E, Davison M, Mennone J, Hinoul P (2015) Consistency and sealing of advanced bipolar tissue sealers. Med Devices (Auckl). https://doi.org/10.2147/mder.s79642

    Article  PubMed  Google Scholar 

  34. Eickhoff A, Van Dam J, Jakobs R, Kudis V, Hartmann D, Damian U, Weickert U, Schilling D, Riemann JF (2007) Computer-assisted colonoscopy (the neoguide endoscopy system): results of the first human clinical trial. Am J Gastroenterol 102:261–266

    Article  PubMed  Google Scholar 

  35. Rothstein DH, Raval MV (2018) Operating room efficiency. Semin Pediatr Surg 27(2):79–85. https://doi.org/10.1053/j.sempedsurg.2018.02.004

    Article  PubMed  Google Scholar 

  36. Mayer EK, Sevdalis N, Rout S, Caris J, Russ S, Mansell J et al (2016) Surgical checklist implementation project: the impact of variable WHO checklist compliance on risk-adjusted clinical outcomes after national implementation. A longitudinal study. Ann Surg 263(1):58–63. https://doi.org/10.1097/sla.0000000000001185

    Article  PubMed  Google Scholar 

  37. Russ S, Arora S, Wharton R, Wheelock A, Hull L, Sharma E et al (2013) Measuring safety and efficiency in the operating room: development and validation of a metric for evaluating task execution in the operating room. J Am Coll Surg 216(3):472–481. https://doi.org/10.1016/j.jamcollsurg.2012.12.013

    Article  PubMed  Google Scholar 

  38. Ayas S, Gordon L, Donmez B, Grantcharov T (2021) The effect of intraoperative distractions on severe technical events in laparoscopic bariatric surgery. Surg Endosc 35(8):4569–4580. https://doi.org/10.1007/s00464-020-07878-w

    Article  PubMed  Google Scholar 

  39. Jung JJ, Jüni P, Lebovic G, Grantcharov T (2020) First-year analysis of the operating room black box study. Ann Surg 271(1):122–127. https://doi.org/10.1097/sla.0000000000002863

    Article  PubMed  Google Scholar 

  40. Okamura AM (2016) ICRA lecture 2: kinematics and control of medical robots. In: ICRA 2016 Tutorial on Medical Robotics

  41. Kuo C-H, Dai JS, Dasgupta P (2012) Kinematic design considerations for minimally invasive surgical robots: an overview: kinematic design considerations for MIS robots. Int J Med Robot 8(2):127–145. https://doi.org/10.1002/rcs.453

    Article  PubMed  Google Scholar 

  42. van Amsterdam B, Clarkson MJ, Stoyanov D (2021) Gesture recognition in robotic surgery: a review. IEEE Trans Biomed Eng 68(6):2021–2035. https://doi.org/10.1109/tbme.2021.3054828

    Article  PubMed  Google Scholar 

  43. Green CA, Kim EH, O’Sullivan PS, Chern H (2018) Using technological advances to improve surgery curriculum: experience with a mobile application. J Surg Educ 75(4):1087–1095. https://doi.org/10.1016/j.jsurg.2017.12.005

    Article  PubMed  Google Scholar 

  44. Catchpole K, Perkins C, Bresee C, Solnik MJ, Sherman B, Fritch J et al (2016) Safety, efficiency and learning curves in robotic surgery: a human factors analysis. Surg Endosc 30(9):3749–3761. https://doi.org/10.1007/s00464-015-4671-2

    Article  PubMed  Google Scholar 

  45. Weigl M, Weber J, Hallett E, Pfandler M, Schlenker B, Becker A et al (2018) Associations of intraoperative flow disruptions and operating room teamwork during robotic-assisted radical prostatectomy. Urology 114:105–113. https://doi.org/10.1016/j.urology.2017.11.060

    Article  PubMed  Google Scholar 

  46. Law KE, Ray RD, D’Angelo ALD, Cohen ER, DiMarco SM, Linsmeier E et al (2016) Exploring senior residents’ intraoperative error management strategies: a potential measure of performance improvement. J Surg Educ 73(6):e64–e70. https://doi.org/10.1016/j.jsurg.2016.05.016

    Article  PubMed  Google Scholar 

  47. Ibrahim AM, Varban OA, Dimick JB (2016) Novel uses of video to accelerate the surgical learning curve. J Laparoendosc Adv Surg Tech A 26(4):240–242. https://doi.org/10.1089/lap.2016.0100

    Article  PubMed  PubMed Central  Google Scholar 

  48. Saun TJ, Zuo KJ, Grantcharov TP (2019) Video technologies for recording open surgery: a systematic review. Surg Innov 26(5):599–612. https://doi.org/10.1177/1553350619853099

    Article  PubMed  Google Scholar 

  49. Abdelsattar JM, Pandian TK, Finnesgard EJ, El Khatib MM, Rowse PG, Buckarma ENH et al (2015) Do you see what I see? How we use video as an adjunct to general surgery resident education. J Surg Educ 72(6):e145–e150. https://doi.org/10.1016/j.jsurg.2015.07.012

    Article  PubMed  Google Scholar 

  50. Isaacson D, Green C, Topp K, O’Sullivan P, Kim E (2017) Guided laparoscopic video tutorials for medical student instruction in abdominal anatomy. Mededportal 13(1):10559. https://doi.org/10.15766/mep_2374-8265.10559

    Article  PubMed  PubMed Central  Google Scholar 

  51. Dominguez CO, Flach JM, McKellar DP, Dunn M (2002) Using videotaped cases to elicit perceptual expertise in laparoscopic surgery. In: Proceedings third annual symposium on human interaction with complex systems HICS’96. IEEE Computer Society Press

  52. Mazer L, Varban O, Montgomery JR, Awad MM, Schulman A (2022) Video is better: why aren’t we using it? A mixed-methods study of the barriers to routine procedural video recording and case review. Surg Endosc 36(2):1090–1097. https://doi.org/10.1007/s00464-021-08375-4

    Article  PubMed  Google Scholar 

  53. Green JL, Suresh V, Bittar P, Ledbetter L, Mithani SK, Allori A (2019) The utilization of video technology in surgical education: a systematic review. J Surg Res 235:171–180. https://doi.org/10.1016/j.jss.2018.09.015

    Article  PubMed  Google Scholar 

  54. Hu Y-Y, Mazer LM, Yule SJ, Arriaga AF, Greenberg CC, Lipsitz SR et al (2017) Complementing operating room teaching with video-based coaching. JAMA Surg 152(4):318–325. https://doi.org/10.1001/jamasurg.2016.4619

    Article  PubMed  Google Scholar 

  55. Stulberg JJ, Huang R, Kreutzer L, Ban K, Champagne BJ, Steele SR et al (2020) Association between surgeon technical skills and patient outcomes. JAMA Surg 155(10):960–968. https://doi.org/10.1001/jamasurg.2020.3007

    Article  PubMed  PubMed Central  Google Scholar 

  56. Grenda TR, Pradarelli JC, Dimick JB (2016) Using surgical video to improve technique and skill. Ann Surg 264(1):32–33. https://doi.org/10.1097/sla.0000000000001592

    Article  PubMed  Google Scholar 

  57. Madani A, Vassiliou MC, Watanabe Y, Al-Halabi B, Al-Rowais MS, Deckelbaum DL et al (2017) What are the principles that guide behaviors in the operating room?: Creating a framework to define and measure performance. Ann Surg 265(2):255–267. https://doi.org/10.1097/sla.0000000000001962

    Article  PubMed  Google Scholar 

  58. Hashimoto DA, Rosman G, Rus D, Meireles OR (2018) Artificial intelligence in surgery: promises and perils. Ann Surg 268(1):70–76. https://doi.org/10.1097/sla.0000000000002693

    Article  PubMed  Google Scholar 

  59. Ward TM, Mascagni P, Ban Y, Rosman G, Padoy N, Meireles O et al (2021) Computer vision in surgery. Surgery 169(5):1253–1256. https://doi.org/10.1016/j.surg.2020.10.039

    Article  PubMed  Google Scholar 

  60. Mascagni P, Alapatt D, Sestini L, Altieri MS, Madani A, Watanabe Y et al (2022) Computer vision in surgery: from potential to clinical value. NPJ Digit Med. https://doi.org/10.1038/s41746-022-00707-5

    Article  PubMed  PubMed Central  Google Scholar 

  61. Loftus TJ, Tighe PJ, Filiberto AC, Efron PA, Brakenridge SC, Mohr AM et al (2020) Artificial intelligence and surgical decision-making. JAMA Surg 155(2):148–158. https://doi.org/10.1001/jamasurg.2019.4917

    Article  PubMed  PubMed Central  Google Scholar 

  62. Urban G, Tripathi P, Alkayali T, Mittal M, Jalali F, Karnes W et al (2018) Deep learning localizes and identifies polyps in real time with 96% accuracy in screening colonoscopy. Gastroenterology 155(4):1069-1078.e8. https://doi.org/10.1053/j.gastro.2018.06.037

    Article  PubMed  Google Scholar 

  63. Madani A, Namazi B, Altieri MS, Hashimoto DA, Rivera AM, Pucher PH et al (2022) Artificial intelligence for intraoperative guidance: using semantic segmentation to identify surgical anatomy during laparoscopic cholecystectomy. Ann Surg 276(2):363–369. https://doi.org/10.1097/sla.0000000000004594

    Article  PubMed  Google Scholar 

  64. Zhang X, Chen F, Yu T, An J, Huang Z, Liu J et al (2019) Real-time gastric polyp detection using convolutional neural networks. PLoS ONE 14(3):e0214133. https://doi.org/10.1371/journal.pone.0214133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bellini V, Guzzon M, Bigliardi B, Mordonini M, Filippelli S, Bignami E (2019) Artificial Intelligence: a new tool in operating room management. Role of machine learning models in operating room optimization. J Med Syst 44(1):20. https://doi.org/10.1007/s10916-019-1512-1

    Article  PubMed  Google Scholar 

  66. Wang P, Liu X, Berzin TM, Glissen Brown JR, Liu P, Zhou C et al (2020) Effect of a deep-learning computer-aided detection system on adenoma detection during colonoscopy (CADe-DB trial): a double-blind randomised study. Lancet Gastroenterol Hepatol 5(4):343–351. https://doi.org/10.1016/S2468-1253(19)30411-X

    Article  PubMed  Google Scholar 

  67. Mascagni P, Vardazaryan A, Alapatt D, Urade T, Emre T, Fiorillo C et al (2022) Artificial intelligence for surgical safety: automatic assessment of the critical view of safety in laparoscopic cholecystectomy using deep learning. Ann Surg 275(5):955–961. https://doi.org/10.1097/SLA.0000000000004351

    Article  PubMed  Google Scholar 

  68. Birkmeyer JD, Finks JF, O’reilly A, Oerline M, Carlin AM, Nunn AR et al (2013) Michigan bariatric surgery collaborative. Surgical skill and complication rates after bariatric surgery. N Engl J Med 369:1434–1442

    Article  CAS  PubMed  Google Scholar 

  69. Katz AJ (2016) The role of crowdsourcing in assessing surgical skills. Surg Laparosc Endosc Percutan Tech 26:271–277

    Article  PubMed  Google Scholar 

  70. Hung AJ, Chen J, Gill IS (2018) Automated performance metrics and machine learning algorithms to measure surgeon performance and anticipate clinical outcomes in robotic surgery. JAMA Surg. https://doi.org/10.1001/jamasurg.2018.1512

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bertsimas D, Dunn J, Velmahos GC, Kaafarani HMA (2018) Surgical risk is not linear: derivation and validation of a novel, user-friendly, and machine-learning-based predictive OpTimal Trees in Emergency Surgery Risk (POTTER) calculator: derivation and validation of a novel, user-friendly, and machine-learning-based predictive OpTimal trees in emergency surgery risk (POTTER) calculator. Ann Surg 268(4):574–583. https://doi.org/10.1097/SLA.0000000000002956

    Article  PubMed  Google Scholar 

  72. Loftus TJ, Vlaar APJ, Hung AJ, Bihorac A, Dennis BM, Juillard C et al (2022) Executive summary of the artificial intelligence in surgery series. Surgery 171(5):1435–1439. https://doi.org/10.1016/j.surg.2021.10.047

    Article  PubMed  Google Scholar 

  73. Cheng J-Z, Ni D, Chou Y-H, Qin J, Tiu C-M, Chang Y-C et al (2016) Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci Rep 6(1):24454. https://doi.org/10.1038/srep24454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118. https://doi.org/10.1038/nature21056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Donald R, Howells T, Piper I, Enblad P, Nilsson P, Chambers I et al (2019) Forewarning of hypotensive events using a Bayesian artificial neural network in neurocritical care. J Clin Monit Comput 33(1):39–51. https://doi.org/10.1007/s10877-018-0139-y

    Article  PubMed  Google Scholar 

  76. CLEW (2021) CLEW Medical receives FDA clearance for AI-based predictive analytics technology to support adult ICU patient assessment. PR Newswire. https://www.prnewswire.com/il/news-releases/clew-medical-receives-fda-clearance-for-ai-based-predictive-analytics-technology-to-support-adult-icu-patient-assessment-301221173.html. Accessed 19 Mar 2023

  77. Wijnberge M, Geerts BF, Hol L, Lemmers N, Mulder MP, Berge P et al (2020) Effect of a machine learning-derived early warning system for intraoperative hypotension vs standard care on depth and duration of intraoperative hypotension during elective noncardiac surgery: the HYPE randomized clinical trial: the HYPE randomized clinical trial. JAMA 323(11):1052–1060. https://doi.org/10.1001/jama.2020.0592

    Article  PubMed  PubMed Central  Google Scholar 

  78. Komorowski M, Celi LA, Badawi O, Gordon AC, Faisal AA (2018) The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care. Nat Med 24(11):1716–1720. https://doi.org/10.1038/s41591-018-0213-5

    Article  CAS  PubMed  Google Scholar 

  79. Adler JR Jr, Chang SD, Murphy MJ, Doty J, Geis P, Hancock SL (1997) The cyberknife: a frameless robotic system for radiosurgery. Stereotact Funct Neurosurg 69(1–4 Pt 2):124–128. https://doi.org/10.1159/000099863

    Article  PubMed  Google Scholar 

  80. Gonzalez GT, Kaur U, Rahman M, Venkatesh V, Sanchez N, Hager G et al (2021) From the dexterous surgical skill to the battlefield—a robotics exploratory study. Robot Explor Study 186:288–294

    Google Scholar 

  81. Murali A, Sen S, Kehoe B, Garg A, McFarland S, Patil S et al (2015) Learning by observation for surgical subtasks: multilateral cutting of 3D viscoelastic and 2D orthotropic tissue phantoms. In: 2015 IEEE international conference on robotics and automation (ICRA). IEEE

  82. Saeidi H, Opfermann JD, Kam M, Wei S, Leonard S, Hsieh MH et al (2022) Autonomous robotic laparoscopic surgery for intestinal anastomosis. Sci Robot 7(62):eabj908. https://doi.org/10.1126/scirobotics.abj2908

    Article  Google Scholar 

  83. Balch J, Upchurch GR Jr, Bihorac A, Loftus TJ (2021) Bridging the artificial intelligence valley of death in surgical decision-making. Surgery 169(4):746–748. https://doi.org/10.1016/j.surg.2021.01.008

    Article  PubMed  Google Scholar 

  84. Lifshitz B (2021) Racism is systemic in artificial intelligence systems, too. Georget Secur Stud Rev. https://georgetownsecuritystudiesreview.org/2021/05/06/racism-is-systemic-in-artificial-intelligence-systems-too/. Accessed 19 Mar 2023

  85. Murthy VH, Krumholz HM, Gross CP (2004) Participation in cancer clinical trials: race-, sex-, and age-based disparities. JAMA 291(22):2720. https://doi.org/10.1001/jama.291.22.2720

    Article  CAS  PubMed  Google Scholar 

  86. CPT® Appendix S: artificial intelligence taxonomy for medical services and procedures. Ama-assn.org. 2022. https://www.ama-assn.org/system/files/cpt-appendix-s.pdf. Accessed 19 Mar 2023

  87. Williams TE Jr, Satiani B, Thomas A, Ellison EC (2009) The impending shortage and the estimated cost of training the future surgical workforce. Ann Surg 250(4):590–597. https://doi.org/10.1097/SLA.0b013e3181b6c90b

    Article  PubMed  Google Scholar 

  88. Bogen EM, Schlachta CM, Ponsky T (2019) White paper: technology for surgical telementoring-SAGES Project 6 Technology Working Group. Surg Endosc 33(3):684–690. https://doi.org/10.1007/s00464-018-06631-8

    Article  PubMed  Google Scholar 

  89. Augestad KM, Han H, Paige J, Ponsky T, Schlachta CM, Dunkin B et al (2017) Educational implications for surgical telementoring: a current review with recommendations for future practice, policy, and research. Surg Endosc 31(10):3836–3846. https://doi.org/10.1007/s00464-017-5690-y

    Article  CAS  PubMed  Google Scholar 

  90. Butt K, Augestad KM (2021) Educational value of surgical telementoring. J Surg Oncol 124:231–240

    Article  Google Scholar 

  91. Wyles SM, Miskovic D, Ni Z, Darzi AW, Valori RM, Coleman MG et al (2016) Development and implementation of the Structured Training Trainer Assessment Report (STTAR) in the English National Training Programme for laparoscopic colorectal surgery. Surg Endosc 30(3):993–1003. https://doi.org/10.1007/s00464-015-4281-z

    Article  PubMed  Google Scholar 

  92. Rosser JC Jr, Bell RL, Harnett B, Rodas E, Murayama M, Merrell R (1999) Use of mobile low-bandwith telemedical techniques for extreme telemedicine applications. J Am Coll Surg 189(4):397–404. https://doi.org/10.1016/s1072-7515(99)00185-4

    Article  PubMed  Google Scholar 

  93. Goel SS, Greenbaum AB, Patel A, Little SH, Parikh R, Wyler von Ballmoos MC et al (2020) Role of teleproctoring in challenging and innovative structural interventions amid the COVID-19 pandemic and beyond. JACC Cardiovasc Interv 13(16):1945–1948. https://doi.org/10.1016/j.jcin.2020.04.013

    Article  PubMed  PubMed Central  Google Scholar 

  94. Erridge S, Yeung DKT, Patel HRH, Purkayastha S (2019) Telementoring of surgeons: a systematic review. Surg Innov 26(1):95–111. https://doi.org/10.1177/1553350618813250

    Article  PubMed  Google Scholar 

  95. Huang EY, Knight S, Guetter CR, Davis CH, Moller M, Slama E et al (2019) Telemedicine and telementoring in the surgical specialties: a narrative review. Am J Surg 218(4):760–766. https://doi.org/10.1016/j.amjsurg.2019.07.018

    Article  PubMed  Google Scholar 

  96. El-Sabawi B, Magee W (2016) The evolution of surgical telementoring: current applications and future directions. Ann Transl Med 4(20):391. https://doi.org/10.21037/atm.2016.10.04

    Article  PubMed  PubMed Central  Google Scholar 

  97. Hung AJ, Chen J, Shah A, Gill IS (2018) Telementoring and telesurgery for minimally invasive procedures. J Urol 199(2):355–369. https://doi.org/10.1016/j.juro.2017.06.082

    Article  PubMed  Google Scholar 

  98. Shin DH, Dalag L, Azhar RA, Santomauro M, Satkunasivam R, Metcalfe C et al (2015) A novel interface for the telementoring of robotic surgery. BJU Int 116(2):302–308. https://doi.org/10.1111/bju.12985

    Article  PubMed  PubMed Central  Google Scholar 

  99. Shahzad N, Chawla T, Gala T (2019) Telesurgery prospects in delivering healthcare in remote areas. J Pak Med Assoc 69(Supp 1):S69–S71

    Google Scholar 

  100. Marescaux J (2002) Code name: “Lindbergh operation.” Ann Chir 127(1):2–4. https://doi.org/10.1016/s0003-3944(01)00658-7

    Article  CAS  PubMed  Google Scholar 

  101. Xu S, Perez M, Yang K, Perrenot C, Felblinger J, Hubert J (2014) Determination of the latency effects on surgical performance and the acceptable latency levels in telesurgery using the dV-Trainer(®) simulator. Surg Endosc 28(9):2569–2576. https://doi.org/10.1007/s00464-014-3504-z

    Article  PubMed  Google Scholar 

  102. Anvari M, McKinley C, Stein H (2005) Establishment of the world’s first telerobotic remote surgical service: for provision of advanced laparoscopic surgery in a rural community. Ann Surg 241(3):460–464. https://doi.org/10.1097/01.sla.0000154456.69815.ee

    Article  PubMed  PubMed Central  Google Scholar 

  103. Wirz R, Torres LG, Swaney PJ, Gilbert H, Alterovitz R, Webster RJ 3rd et al (2015) An experimental feasibility study on robotic endonasal telesurgery. Neurosurgery 76(4):479–484 (discussion 484). https://doi.org/10.1227/NEU.0000000000000623

    Article  PubMed  Google Scholar 

  104. Acemoglu A, Peretti G, Trimarchi M, Hysenbelli J, Krieglstein J, Geraldes A et al (2020) Operating from a distance: robotic vocal cord 5G telesurgery on a cadaver. Ann Intern Med 173(11):940–941. https://doi.org/10.7326/M20-0418

    Article  PubMed  Google Scholar 

  105. Peters BS, Armijo PR, Krause C, Choudhury SA, Oleynikov D (2018) Review of emerging surgical robotic technology. Surg Endosc 32(4):1636–1655. https://doi.org/10.1007/s00464-018-6079-2

    Article  PubMed  Google Scholar 

  106. Sheetz KH, Claflin J, Dimick JB (2020) Trends in the adoption of robotic surgery for common surgical procedures. JAMA Netw Open 3(1):e1918911. https://doi.org/10.1001/jamanetworkopen.2019.18911

    Article  PubMed  PubMed Central  Google Scholar 

  107. Khandalavala K, Shimon T, Flores L, Armijo PR, Oleynikov D (2020) Emerging surgical robotic technology: a progression toward microbots. Ann Laparosc Endosc Surg. 5:3. https://doi.org/10.21037/ales.2019.10.02

    Article  Google Scholar 

  108. Abiri A, Juo Y-Y, Tao A, Askari SJ, Pensa J, Bisley JW et al (2019) Artificial palpation in robotic surgery using haptic feedback. Surg Endosc 33(4):1252–1259. https://doi.org/10.1007/s00464-018-6405-8

    Article  PubMed  Google Scholar 

  109. Shademan A, Decker RS, Opfermann JD, Leonard S, Krieger A, Kim PCW (2016) Supervised autonomous robotic soft tissue surgery. Sci Transl Med 8(337):337ra64. https://doi.org/10.1126/scitranslmed.aad9398

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

This paper received no funding.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Nova Szoka.

Ethics declarations

Disclosures

Yang, Schlachta, Rothenberg, and Reed have no disclosures. Green reports honoraria from Intuitive Surgical for educational events. Hazey reports CME support from Memorial Hospital of Union County, and a patent for a endoluminal gastric restriction device. Madani reports consulting fees from Activ Surgical, and that he is chair of the board for the Global Surgical AI Collaborative. Ponsky reports honoraria and support for travel from MSKSCC and Standford for grand rounds presentations. He received travel support for the AIMED Global Summit 2023. Ali reports participating in the advisory boards and owning stock options in Orchestra Health, OptiSurg, and ClearCam. He has received honoraria and support for travel from AcuityMD. He has received consulting fees from MedTrak, Pristine Surgical, AMBU, and Moon Surgical. Oleynikov reports an NIH grant, honoraria from Medtronic, and stock in Virtual Incision Corp. Szoka reports a research grant from Digbi Health and consulting fees from CSATS for surgical video review services. She is a founder of Endolumik, Inc, in which she owns stock. She holds several patents and is in a licensing agreement with West Virginia University regarding one such patent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

The SAGES Digital Surgery Working Group., Ali, J.T., Yang, G. et al. Defining digital surgery: a SAGES white paper. Surg Endosc 38, 475–487 (2024). https://doi.org/10.1007/s00464-023-10551-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-023-10551-7

Keywords