Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A mesh-free method for analysis of the thermal and mechanical buckling of functionally graded cylindrical shell panels

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The buckling response of functionally graded ceramic-metal cylindrical shell panels under axial compression and thermal load is presented here. The formulation is based on the first-order shear deformation shell theory and element-free kp-Ritz method. The material properties of shell panels are assumed to vary through their thickness direction according to a power-law distribution of the volume fraction of constituents. Approximations of the displacement field are expressed in terms of a set of mesh-free kernel particle functions. A stabilized conforming nodal integration approach is employed to estimate the bending stiffness, and the shear and membrane terms are evaluated using a direct nodal integration technique to eliminate membrane and shear locking for very thin shells. The mechanical and thermal buckling responses of functionally graded shell panels are investigated, and the influences of the volume fraction exponent, boundary conditions, and temperature distribution on their buckling strengths are also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yamanouchi M, Hirai T, Shiota I (1990) Overall view of the P/M fabrication of functionally gradient materials. In: Proceedings of first international symposium on functionally gradient materials, Sendai, Japan, pp 59–64

  2. Reddy JN, Chin CD (1998) Thermomechanical analysis of functionally graded cylinders and plates. J Therm Stresses 21: 593–626

    Article  Google Scholar 

  3. Obata Y, Noda N (1996) Optimum material design for functionally gradient material plate. Archive Appl Mech 66: 581–589

    Article  MATH  Google Scholar 

  4. He XQ, Ng TY, Sivashanker S, Liew KM (2001) Active control of FGM plates with integrated piezoelectric sensors and actuators. Int J Solids Struct 38: 1641–1655

    Article  MATH  Google Scholar 

  5. Liew KM, Kitiporchai S, Zhang XZ, Lim CW (2003) Analysis of the thermal stress behavior of functionally graded hollow circular cylinders. Int J Solids Struct 40: 2355–2380

    Article  MATH  Google Scholar 

  6. Yang J, Shen HS (2002) Vibration characteristics and transient response of shear-deformable functionally graded plates in thermal environments. J Sound Vib 255: 579–602

    Article  Google Scholar 

  7. Feldman E, Aboudi J (1997) Buckling analysis of functionally graded plates subjected to uniaxial loading. Compos Struct 38: 29–36

    Article  Google Scholar 

  8. Shahsian R, Eslami MR (2003) Thermal buckling of functionally graded cylindrical shell. J Therm Stress 26: 277–294

    Article  Google Scholar 

  9. Bhangale RK, Ganesan N, Padmanabhan C (2006) Linear thermoelastic buckling and free vibration behavior of functionally graded truncated conical shells. J Sound Vib 292: 341–371

    Article  Google Scholar 

  10. Shen HS (2002) Postbuckling analysis of axially-loaded functionally graded cylindrical panels in thermal environment. Int J Solids Struct 39: 5991–6010

    Article  MATH  Google Scholar 

  11. Liew KM, Yang J, Kitipornchai S (2003) The postbuckling of piezoelectric FGM plates subjected to thermo-electro-mechanical loading. Int J Solids Struct 40: 3869–3892

    Article  MATH  Google Scholar 

  12. Liew KM, Yang J, Kitipornchai S (2004) Thermal postbuckling of laminated plates comprising FGM with temperature-dependent material properties. J Appl Mech ASME 71: 839–850

    Article  MATH  Google Scholar 

  13. Woo J, Merguid SA, Stranata JC, Liew KM (2005) Thermomechanical postbuckling analysis of moderately thick functionally graded plates and shallow shells. Int J Mech Sci 47: 1147–1171

    Article  MATH  Google Scholar 

  14. Yang J, Liew KM, Wu YF, Kitipornchai S (2006) Thermo-mechanical post-buckling of FGM cylindrical panels with temperature-dependent properties. Int J Solids Struct 43: 307–324

    Article  MATH  Google Scholar 

  15. Krysl P, Belytschko T (1996) Analysis of thin shells by the element-free Galerkin method. Int J Numer Methods Eng 33: 3057–3080

    MATH  Google Scholar 

  16. Li S, Hao W, Liu WK (2000) Numerical simulations of large deformation of thin shell structures using meshfree methods. Comput Mech 25: 102–116

    Article  MATH  Google Scholar 

  17. Liew KM, Wu HY, Ng TY (2002) Meshless method for modeling of human proximal femur: treatment of nonconvex boundaries and stress analysis. Comput Mech 28: 390–400

    Article  MATH  Google Scholar 

  18. Qian LF, Batra RC (2004) Transient thermoelastic deformations of a thick functionally graded plate. J Therm Stresses 27: 705–740

    Article  Google Scholar 

  19. Ferreira AJM, Batra RC, Roque CMC, Qian LF, Jorge RMN (2006) Natural frequencies of functionally graded plates. Compos Struct 75: 593–600

    Article  Google Scholar 

  20. Zhao X, Liew KM, Ng TY (2006) The element-free kp-Ritz method for free vibration analysis of conical shell panels. J Sound Vib 295: 906–922

    Article  Google Scholar 

  21. Liew KM, Ng TY, Zhao X (2006) Dynamic stability of rotating cylindrical shells subjected to periodic axial loads. Int J Solids Struct 43: 7553–7570

    Article  MATH  Google Scholar 

  22. Zhao X, Lee YY, Liew KM (2009) Free vibration analysis of functionally graded plates using element free kp-Ritz method. J Sound Vib 319: 918–939

    Article  Google Scholar 

  23. Liew KM, Ng TY, Zhao X (2005) Free vibration analysis of conical shells via the element-free kp-Ritz method. J Sound Vib 281: 627–645

    Article  Google Scholar 

  24. Touloukian YS (1967) Thermophysical properties of high temperature solid materials. McMillan, New York

    Google Scholar 

  25. Efraim E, Eisenberger M (2007) Exact vibration analysis of variable thickness thick annular isotropic and FGM plates. J Sound Vib 299: 720–738

    Article  Google Scholar 

  26. Chen JS, Pan C, Wu CT, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of nonlinear structures. Comput Methods Appl Mech Eng 139: 195–227

    Article  MATH  MathSciNet  Google Scholar 

  27. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Eng 20: 1081–1106

    Article  MATH  MathSciNet  Google Scholar 

  28. Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 50: 435–466

    Article  MATH  Google Scholar 

  29. Dolbow J, Belytschko T (1999) Numerical integration of Galerkin weak form in meshfree methods. Comput Mech 23: 219–230

    Article  MATH  MathSciNet  Google Scholar 

  30. Chen JS, Wang DD (2004) Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reisner plate formulation. Comput Methods Appl Mech Eng 193: 1065–1083

    Article  MATH  Google Scholar 

  31. Liu GR, Li Y, Dai KY, Luan MT, Xue W (2006) A linearly conforming RPIM for solids mechanics problems. Int J Comput Methods 3: 401–428

    Article  MathSciNet  Google Scholar 

  32. Zhao X, Liu GR, Dai KY, Zhong ZH, Li GY, Han X (2008) Geometric nonlinear analysis of plates and cylindrical shells via a linearly conforming radial point interpolation method. Comput Mech 42: 133–144

    Article  MATH  Google Scholar 

  33. Soric J, Li Q, Jarak T, Atluri SN (2004) Meshless local Petrove-Galerkin formulation for ananlysis of thick plates. CMES Comput Model Eng Sci 4: 349–357

    Google Scholar 

  34. Srinivas S, Rao AK (1973) Flexure of thick rectangular plates. J Appl Mech 40: 298–299

    Google Scholar 

  35. Xiao JR, Batra RC, Gilhooley DF, Gillespie JW Jr, McCarthy MA (2007) Analysis of thick plates by using a higher-order shear and normal deformable plate theory and MLPG method with radial basis functions. Comput Methods Appl Mech Eng 196: 979–987

    Article  MATH  Google Scholar 

  36. Palazotto AN, Dennis ST (1992) Nonlinear analysis of shell structures. AIAA, Washington, DC

    MATH  Google Scholar 

  37. Reddy JN (2004) Mechanics of laminated composite plates and shells: theory and analysis, 2nd edn. CRC press, Boca Raton

    MATH  Google Scholar 

  38. Zhao X, Liu GR, Dai KY, Zhong ZH, Li GY, Han X (2009) A linearly conforming radial point interpolation method (LC-RPIM) for shells. Comput Mech 43: 403–413

    Article  MATH  Google Scholar 

  39. Cho M, Roh HY (2003) Development of geometrically exact new elements based on general curvilinear coordinates. Int J Numer Methods Eng 56: 81–115

    Article  MATH  Google Scholar 

  40. Timoshenko S, Gere J (1961) Theory of elastic stability, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  41. Hilburger MW, Britt V, Nemeth MP (2001) Buckling behavior of compression-loaded quasi-isotropic curved panels with a circular cutout. Int J Solids Struct 38: 1495–1522

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Liew.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Liew, K.M. A mesh-free method for analysis of the thermal and mechanical buckling of functionally graded cylindrical shell panels. Comput Mech 45, 297–310 (2010). https://doi.org/10.1007/s00466-009-0446-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-009-0446-8

Keywords