Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Lie-group interpolation and variational recovery for internal variables

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We propose a variational procedure for the recovery of internal variables, in effect extending them from integration points to the entire domain. The objective is to perform the recovery with minimum error and at the same time guarantee that the internal variables remain in their admissible spaces. The minimization of the error is achieved by a three-field finite element formulation. The fields in the formulation are the deformation mapping, the target or mapped internal variables and a Lagrange multiplier that enforces the equality between the source and target internal variables. This formulation leads to an \(L_2\) projection that minimizes the distance between the source and target internal variables as measured in the \(L_2\) norm of the internal variable space. To ensure that the target internal variables remain in their original space, their interpolation is performed by recourse to Lie groups, which allows for direct polynomial interpolation of the corresponding Lie algebras by means of the logarithmic map. Once the Lie algebras are interpolated, the mapped variables are recovered by the exponential map, thus guaranteeing that they remain in the appropriate space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Antman S (2005) Nonlinear Problems in Elasticity, 2nd edn. Springer, New York

    Google Scholar 

  2. Barlow J (1976) Optimal stress locations in finite element models. Int J Numer Methods Eng 10:243–251

    Article  MATH  Google Scholar 

  3. Bleier N, Mosler J (2012) Efficient variational constitutive updates by means of a novel parameterization of the flow rule. Int J Numer Methods Eng 89(9):1120–1143. doi:10.1002/nme.3280. ISSN 0029–5981

    Google Scholar 

  4. Brenner SC, Scott LR (2002) The mathematical theory of finite element methods. Springer, New York. ISBN 9780387954516

  5. Bucher A, Meyer A, Goerke UJ, Kreissig R (2007) A comparison of mapping algorithms for hierarchical adaptive FEM in finite elasto-plasticity. Comput Mech 39(4): 521–536. doi:10.1007/s00466-006-0051-z. ISSN 0178–7675

    Google Scholar 

  6. Cheng SH, Higham NJ, Kenney CS, Laub AJ (2001) Approximating the logarithm of a matrix to specified accuracy. SIAM J Matrix Anal Appl 22(4):1112–1125. ISSN 0895–4798

    Google Scholar 

  7. Davies PI, Higham NJ (2003) A Schur–Parlett algorithm for computing matrix functions. SIAM J Matrix Anal Appl 25(2):464–485. doi:10.1137/S0895479802410815. ISSN 0895–4798

  8. Fancello E, Ponthot JP, Stainier L (2006) A variational formulation of constitutive models and updates in non-linear finite viscoelasticity. Int J Numer Methods Eng 65(11):1831–1864. doi:10.1002/nme.1525. ISSN 0029–5981

    Google Scholar 

  9. Gallier J (2011) Geometric methods and applications: for Computer science and engineering. Springer, New York. ISBN 9781441999603

  10. Higham NJ (2001) Evaluating Padé approximants of the matrix logarithm. SIAM J Matrix Anal Appl 22(4):1126–1135. ISSN 0895–4798

    Google Scholar 

  11. Higham NJ (2005) The scaling and squaring method for the matrix exponential revisited. SIAM J Matrix Anal Appl 26(4):1179–1193. doi:10.1137/04061101X. ISSN 0895–4798

    Google Scholar 

  12. Higham NJ (2008) Functions of matrices, theory and computation. Society for Industrial and Applied Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  13. Hinton E, Campbell JS (1974) Local and global smoothing of discontinuous finite element functions using a least squares method. Int J Numer Methods Eng 8:461–480

    Article  MathSciNet  MATH  Google Scholar 

  14. Jiao XM, Heath MT (2004) Common-refinement-based data transfer between non-matching meshes in multiphysics simulations. Int J Numer Methods Eng 61(14):2402–2427. doi:10.1002/nme.1147. ISSN 0029–5981

    Google Scholar 

  15. Jog CS (2008) The explicit determination of the logarithm of a tensor and its derivatives. J Elast 93(2):141–148. doi:10.1007/s10659-008-9169-x. ISSN 0374–3535

    Google Scholar 

  16. Kosmann-Schwarzbach Y (2009) Groups and symmetries: from finite groups to lie groups. Springer, New York. ISBN 9780387788654

  17. Krieg RD, Krieg DB (1977) Accuracies of numerical solution methods for the elastic-perfectly plastic model. ASME J Pres Vessel Technol 99:510–515

    Article  Google Scholar 

  18. Lambrecht M, Miehe C, Dettmar J (2003) Energy relaxation of non-convex incremental stress potentials in a strain-softening elastic-plastic bar. Int J Solids Struct 40(6):1369–1391. doi:10.1016/S0020-7683(02)00658-3. ISSN 0020–7683

    Google Scholar 

  19. Marsden JE, Ratiu TS (1999) Introduction to mechanics and symmetry: a basic exposition of classical mechanical systems. Springer, New York. ISBN 9780387986432

  20. Miehe C, Lambrecht M, Gürses E (2004) Analysis of material instabilities in inelastic solids by incremental energy minimization and relaxation methods: evolving deformation microstructures in finite plasticity. J Mech Phys Solids 52(12): 2725–2769. doi:10.1016/j.jmps.2004.05.011. ISSN 0022–5096

    Google Scholar 

  21. Miehe C, Schotte J, Lambrecht M (2002) Homogenization of inelastic solid materials at finite strains based on incremental minimization principles. Application to the texture analysis of polycrystals. J Mech Phys Solids 50(10): 2123–2167. doi:10.1016/S0022-5096(02)00016-9. ISSN 0022–5096

  22. Mosler J, Bruhns OT (2010) On the implementation of rate-independent standard dissipative solids at finite strain—Variational constitutive updates. Comput Methods Appl Mech Eng 199(9–12):417–429. doi:10.1016/j.cma.2009.07.006. ISSN 0045–7825

  23. Mota A, Abel JF (2005) Stress recovery in geometrically nonlinear membranes by a Hu-Washizu finite element formulation. Comput Mech 36(3): 171–181. doi:10.1007/s00466-004-0650-5. ISSN 0178–7675

    Google Scholar 

  24. Muschik W, Papenfuss C, Ehrentraut H (2001) A sketch of continuum thermodynamics. J Non-Newton Fluid Mech 96(1–2, Sp. Iss. SI): 255–290. ISSN 0377–0257 (2nd International Workshop on Nonequilibrium Thermodynamics, Oxford, England, Aug, 2000)

    Google Scholar 

  25. Oden JT, Brauchli HJ (1971) On the calculation of consistent stress distributions in finite element approximations. Int J Numer Methods Eng 3:317–325

    Google Scholar 

  26. Orlando A, Peric D (2004) Analysis of transfer procedures in elastoplasticity based on the error in the constitutive equations: Theory and numerical illustration. Int J Numer Methods Eng 60(9): 1595–1631. ISSN 0029–5981

    Google Scholar 

  27. Ortiz M, Quigley JJ (1991) Adaptive mesh refinement in strain localization problems. Comput Methods Appl Mech Eng 90 (1–3):781–804. ISSN 0045–7825

    Google Scholar 

  28. Ortiz M, Stainier L (1999) The variational formulation of viscoplastic constitutive updates. Comput Methods Appl Mech Eng 171 (3–4):419–444

    Google Scholar 

  29. Ortiz M, Radovitzky RA, Repetto EA (2001) The computation of the exponential and logarithmic mappings and their first and second linearizations. Int J Numer Methods Eng 52(12):1431–1441

    Article  MathSciNet  MATH  Google Scholar 

  30. Park FC, Ravani B (1997) Smooth invariant interpolation of rotations. ACM Trans Graph 16 (3):277–295. doi:10.1145/256157.256160. ISSN 0730–0301

    Google Scholar 

  31. Peric D., Hochard C, Dutko M, Owen DRJ (1996) Transfer operators for evolving meshes in small strain elasto-placticity. Comput Methods Appl Mech Eng 137(3–4):331–344. ISSN 0045–7825

    Google Scholar 

  32. Procesi C (2006) Lie groups: an approach through invariants and representations (Universitext), 1st edn. Springer, New York. ISBN 0387260404

  33. Radovitzky R, Ortiz M (1999) Error estimation and adaptive meshing in strongly nonlinear dynamic problems. Comput Methods Appl Mech Eng 172(1–4):203–240. ISSN 0045–7825

    Google Scholar 

  34. Rashid MM (2002) Material state remapping in computational solid mechanics. Int J Numer Methods Eng 55(4):431–450. doi:10.1002/nme.508. ISSN 0029–5981

    Google Scholar 

  35. Sandia National Laboratories (2013a) CUBIT: Geometry and mesh generation toolkit. URL http://cubit.sandia.gov/

  36. Sandia National Laboratories (2013b) LCM: Laboratory for computational mechanics. URL https://software.sandia.gov/albany/

  37. Sepanski MR (2007) Compact lie groups. Springer, New York. ISBN 9780387302638

  38. Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York

    MATH  Google Scholar 

  39. Taylor LM, Becker EB (1983) Some computational aspects of large deformation, rate-dependent plasticity problems. Comput Methods Appl Mech Eng 41:251–278

    Article  MATH  Google Scholar 

  40. The Mathworks, Inc. Matlab (2011) URL http://www.mathworks.com/. Natick, Massachusetts

  41. Weinberg K, Mota A, Ortiz M (2006) A variational constitutive model for porous metal plasticity. Comput Mech 37:142–152

    Article  MATH  Google Scholar 

  42. Wriggers P (2008) Nonlinear finite element methods. Springer, Berlin

  43. Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a-posteriori error estimates. 1. The recovery technique. Int J Numer Methods Eng 33:1331–1364

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Support for this work was received through the U.S. Department of Energy’s (DOE) Advanced Simulation and Computing (ASC) Program at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. This work was also supported in part by the Joint U.S. Department of Defense (DoD)/DOE Munitions Technology Development Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Mota.

Appendix: error minimization

Appendix: error minimization

Proposition

The projection defined by (2.10) is orthogonal with respect to \(V_h\) and therefore the distance between source and target fields is minimal in the \(L_2\) norm of \(V\).

Proof

Define the inner product in \(V\) as

$$\begin{aligned} ({\varvec{u}}, {\varvec{v}}) := \int \limits _B {\varvec{u}}\cdot {\varvec{v}}\ dV, \quad \forall \, {\varvec{u}}, {\varvec{v}}\in V, \end{aligned}$$
(9.1)

and the corresponding \(L_2\) norm as

$$\begin{aligned} ||{\varvec{u}}|| := \left( \int \limits _B {\varvec{u}}\cdot {\varvec{u}}\ dV \right) ^{\frac{1}{2}} \ge 0, \quad \forall \, {\varvec{u}}\in V. \end{aligned}$$
(9.2)

We follow the approach outlined by Brenner and Scott [4]. The variational statement (2.5) may be written after discretization as

$$\begin{aligned} \int \limits _B (\bar{{\varvec{z}}}_h - {\varvec{z}}) \cdot {\varvec{\zeta }}_h \ dV = 0 \end{aligned}$$
(9.3)

where \({\varvec{z}}\in V\) and \(\bar{{\varvec{z}}}_h, {\varvec{\zeta }}_h \in V_h\). Using the inner product notation introduced in (9.1) this discrete statement takes the form

$$\begin{aligned} (\bar{{\varvec{z}}}_h - {\varvec{z}}, {\varvec{\zeta }}_h) = 0, \quad \forall {\varvec{\zeta }}_h \in V_h \end{aligned}$$
(9.4)

which shows the fundamental orthogonality relation between the projection error \(\bar{{\varvec{z}}}_h - {\varvec{z}}\) and the space \(V_h\), therefore proving that (2.10) is an orthogonal projection. Introduce the Cauchy-Schwarz inequality

$$\begin{aligned} ({\varvec{u}}, {\varvec{v}}) \le ||{\varvec{u}}|| ||{\varvec{v}}||, \quad \forall {\varvec{u}}, {\varvec{v}}\in V, \end{aligned}$$
(9.5)

then for any \({\varvec{u}}_h \in V_h\)

$$\begin{aligned} ||\bar{{\varvec{z}}}_h \!-\! {\varvec{z}}||^2&= (\bar{{\varvec{z}}}_h \!-\! {\varvec{z}}, \bar{{\varvec{z}}}_h \!-\! {\varvec{z}}) \nonumber \\&= (\bar{{\varvec{z}}}_h \!-\! {\varvec{z}}, {\varvec{u}}_h \!-\! {\varvec{z}}) \!+\! (\bar{{\varvec{z}}}_h \!-\! {\varvec{z}}, \bar{{\varvec{z}}}_h \!-\! {\varvec{u}}_h)\nonumber \\&= (\bar{{\varvec{z}}}_h \!-\! {\varvec{z}}, {\varvec{u}}_h \!-\! {\varvec{z}}) \quad \text{ from } (9.4) \ \text{ with } \ {\varvec{\zeta }}_h \!=\! \bar{{\varvec{z}}}_h - {\varvec{u}}_h\nonumber \\&\le ||\bar{{\varvec{z}}}_h \!-\! {\varvec{z}}|| ||{\varvec{u}}_h \!-\! {\varvec{z}}|| \quad \text{ from } \ (9.5). \end{aligned}$$
(9.6)

If \(||\bar{{\varvec{z}}}_h - {\varvec{z}}|| = 0\) then (9.6) is satisfied trivially and (2.10) is optimal. If \(||\bar{{\varvec{z}}}_h - {\varvec{z}}|| > 0\) then it follows that \(||\bar{{\varvec{z}}}_h - {\varvec{z}}|| \le ||{\varvec{u}}_h - {\varvec{z}}||\). As \({\varvec{u}}_h\) is any element in \(V_h\), this inequality is also satisfied when taking the infimum

$$\begin{aligned} ||\bar{{\varvec{z}}}_h - {\varvec{z}}|| \le \inf \{||{\varvec{u}}_h - {\varvec{z}}|| : {\varvec{u}}_h \in V_h \}, \end{aligned}$$
(9.7)

and by the definition of the infimum,

$$\begin{aligned} \inf \{||{\varvec{u}}_h - {\varvec{z}}|| : {\varvec{u}}_h \in V_h \} \le ||\bar{{\varvec{z}}}_h - {\varvec{z}}||, \end{aligned}$$
(9.8)

therefore to satisfy both (9.7) and (9.8) it follows that

$$\begin{aligned} ||\bar{{\varvec{z}}}_h - {\varvec{z}}|| = \inf \{||{\varvec{u}}_h - {\varvec{z}}|| : {\varvec{u}}_h \in V_h \}. \end{aligned}$$
(9.9)

The infimum exists for some \({\varvec{u}}_h \in V_h\), thus (9.9) is actually a minimum

$$\begin{aligned} ||\bar{{\varvec{z}}}_h - {\varvec{z}}|| = \min \{||{\varvec{u}}_h - {\varvec{z}}|| : {\varvec{u}}_h \in V_h \}, \end{aligned}$$
(9.10)

which shows that the projection (2.10) is optimal.

An alternate approach to determine that (2.10) is optimal is to introduce the difference or error between \(\bar{{\varvec{z}}}_h\) and \({\varvec{z}}\) into a variational principle as

$$\begin{aligned} \Pi [\bar{{\varvec{z}}}_h] := ||\bar{{\varvec{z}}}_h - {\varvec{z}}||^2 = \int \limits _B (\bar{{\varvec{z}}}_h - {\varvec{z}}) \cdot (\bar{{\varvec{z}}}_h - {\varvec{z}}) \ dV. \end{aligned}$$
(9.11)

Introducing as before the test function \({\varvec{\zeta }}_h\), and upon minimization by applying variations, this leads to

$$\begin{aligned} D\Pi [\bar{{\varvec{z}}}_h]({\varvec{\zeta }}_h) = 2 \int \limits _B (\bar{{\varvec{z}}}_h - {\varvec{z}}) \cdot {\varvec{\zeta }}_h \ dV = 0, \end{aligned}$$
(9.12)

which is equivalent to (9.3) and which implies that (2.10) is optimal as it minimizes the error.

These two methods show that the variational principle (2.2) results in a target field \(\bar{{\varvec{z}}}_h\) that minimizes the error in the norm (9.2) with respect to the source field of internal variables \({\varvec{z}}\). Note that the error (9.11) is zero if and only if the source field \({\varvec{z}}\) is already a member of the discrete space \(V_h\). Thus, in general \(\bar{{\varvec{z}}}_h\) is not equal to \({\varvec{z}}\), and in the evaluation of the equilibrium condition (2.6) with the target internal variables in a new mesh, there are two options: satisfy equilibrium by changing the deformation mapping and maintaining the target internal variables constant, or satisfy equilibrium by evolving the target internal variables and maintaining the deformation mapping constant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mota, A., Sun, W., Ostien, J.T. et al. Lie-group interpolation and variational recovery for internal variables. Comput Mech 52, 1281–1299 (2013). https://doi.org/10.1007/s00466-013-0876-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-013-0876-1

Keywords