Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A weak form quadrature element formulation of geometrically exact shells incorporating drilling degrees of freedom

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Geometrically nonlinear analysis of shell structures is conducted using weak form quadrature elements. A new geometrically exact shell formulation incorporating drilling degrees of freedom is established wherein rotation quaternions in combination with a total Lagrange updating scheme are employed for rotation description. An extended kinematic condition to serve as the drilling rotation constraint, derived from polar decomposition of modified mid-surface deformation gradient, is exactly satisfied in the formulation. Several benchmark examples are presented to illustrate the versatility and robustness of the present formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Ericksen JL, Truesdell C (1958) Exact theory of stress and strain in rods and shells. Arch Ration Mech Anal 1(4):295–323

    MathSciNet  MATH  Google Scholar 

  2. Simo JC, Fox DD (1989) On a stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization. Comput Methods Appl Mech Eng 72:267–304

    Article  MATH  Google Scholar 

  3. Simo JC, Fox DD, Rifai MS (1990) On a stress resultant geometrically exact shell model. Part III: the computational aspects of nonlinear theory. Comput Methods Appl Mech Eng 79:21–74

    Article  MATH  Google Scholar 

  4. Rebel G (1998) Finite rotation shell theory including drill rotations and its finite element implementations. Ph.D dissertation, Delft University of Technology

  5. MacNeal RH, Wilson CT, Harder RL, Hoff CC (1998) The treatment of shell normals in finite element analysis. Finite Elem Anal Des 30:235–242

    Article  MATH  Google Scholar 

  6. Allman DJ (1984) A compatible triangular element including vertex rotations for plane elasticity problems. Comput Struct 19:1–8

    Article  MATH  Google Scholar 

  7. Hughes TJR, Brezzi F (1989) On drilling degrees of freedom. Comput Methods Appl Mech Eng 72:105–121

    Article  MathSciNet  MATH  Google Scholar 

  8. Fox DD, Simo JC (1992) A drill rotation formulation for geometrically exact shells. Comput Methods Appl Mech Eng 98:329–343

    Article  MathSciNet  MATH  Google Scholar 

  9. Wriggers P, Gruttmann F (1993) Thin shells with finite rotation formulated in Biot stresses: theory and finite element formulation. Int J Numer Methods Eng 36:2049–2071

    Article  MATH  Google Scholar 

  10. Gruttmann F, Wagner W, Wriggers P (1992) A nonlinear quadrilateral shell element with drilling degrees of freedom. Arch Appl Mech 62:474–486

    Article  MATH  Google Scholar 

  11. Ibrahimbegović A (1994) Stress resultant geometrically nonlinear shell theory with drilling rotations-part I: a consistent formulation. Comput Methods Appl Mech Eng 118:265–284

    Article  MATH  Google Scholar 

  12. Reissner E (1974) Linear and nonlinear theory of shells. In: Thin shell structures: theory, experiment and design. Prentice-Hall, Englewood Cliffs, New Jersey, 29–44

  13. Wiśniewski K, Turska E (2006) Enhanced Allman quadrilateral for finite drilling rotations. Comput Methods Appl Mech Eng 195:6086–6109

    Article  MATH  Google Scholar 

  14. Wiśniewski K (2010) Finite rotation shells: basic equations and finite elements for reissner kinematics. Springer, Berlin

    Book  MATH  Google Scholar 

  15. Tang YQ, Zhong ZH, Chan SL (2016) Geometrically nonlinear analysis of shells by quadrilateral flat shell element with drill, shear, and warping. Int J Numer Meth Eng 108(10):1248–1272

    Article  MathSciNet  Google Scholar 

  16. Chróścielewski J, Makowski J, Stumpf H (1992) Genuinely resultant shell finite elements accounting for geometric and material non-linearity. Int J Numer Methods Eng 35:63–94

    Article  MATH  Google Scholar 

  17. Chróścielewski J, Witkowski W (2006) Four-node semi-EAS element in six–field nonlinear theory of shells. Int J Numer Meth Eng 68:1137–1179

    Article  MATH  Google Scholar 

  18. Campello EMB, Pimenta PM, Wriggers P (2003) A triangular finite shell element based on a fully nonlinear shell formulation. Comput Mech 31:505–518

    Article  MATH  Google Scholar 

  19. Campello EMB, Pimenta PM, Wriggers P (2011) An exact conserving algorithm for nonlinear dynamics with rotational DOFs and general hyperelasticity. Part 2: shells. Comput Mech 48:195–211

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhong H, Yu T (2007) Flexural vibration analysis of an eccentric annular Mindlin plate. Arch Appl Mech 77(4):185–195

    Article  MATH  Google Scholar 

  21. Zhong H, Yu T (2009) A weak form quadrature element method for plane elasticity problems. Appl Math Model 33(10):3801–3814

    Article  MathSciNet  MATH  Google Scholar 

  22. Bellman RE, Casti J (1971) Differential quadrature and long term integration. J Math Anal Appl 34:235–238

    Article  MathSciNet  MATH  Google Scholar 

  23. Striz AG, Chen WL, Bert CW (1994) Static analysis of structures by the quadrature element method (QEM). Int J Solids Struct 31(20):2807–2818

    Article  MATH  Google Scholar 

  24. Zhong H, Zhang R, Xiao N (2014) A quaternion-based weak form quadrature element formulation for spatial geometrically exact beams. Arch Appl Mech 84(12):1825–1840

    Article  Google Scholar 

  25. Zhang R, Zhong H (2016) A quadrature element formulation of an energy–momentum conserving algorithm for dynamic analysis of geometrically exact beams. Comput Struct 165:96–106

    Article  Google Scholar 

  26. Canuto C, Hussaini MY, Quarteroni A, Zang TA (2006) Spectral methods. fundamentals in single domains. Springer, Berlin

    MATH  Google Scholar 

  27. He R, Zhong H (2012) Large deflection elasto-plastic analysis of frames using the weak form quadrature element method. Finite Elem Anal Des 50:125–133

    Article  Google Scholar 

  28. Zhang R, Zhong H (2015) Weak form quadrature element analysis of geometrically exact shells. Int J Non-Linear Mech 71:63–71

    Article  Google Scholar 

  29. Zhang R, Zhong H (2018) A weak form quadrature element formulation for geometrically exact thin shell analysis. Comput Struct 202:44–59

    Article  Google Scholar 

  30. Mcrobie FA, Lasenby J (1999) Simo-Vu Quoc rods using Clifford algebra. Int J Numer Methods Eng 45:377–398

    Article  MathSciNet  MATH  Google Scholar 

  31. Auricchio F, Carotenuto P, Reali A (2008) On the geometrically exact beam model: a consistent, effective and simple derivation from three-dimensional finite elasticity. Int J Solids Struct 45:4766–4781

    Article  MATH  Google Scholar 

  32. Simo JC, Fox DD, Hughes TJR (1992) Formulations of finite elasticity with independent rotations. Comp Methods Appl Mech Eng 95:277–288

    Article  MathSciNet  MATH  Google Scholar 

  33. Goldman R (2010) Rethinking quaternions: theory and computation. Morgan & Claypool Publishers, San Rafael

    Book  MATH  Google Scholar 

  34. Davis PI, Rabinowitz P (1984) Methods of numerical integration, 2nd edn. Academic Press, Orlando

    MATH  Google Scholar 

  35. Hoff CC, Harder RL, Campbell G, MacNeal RH, Wilson CT (1995) Analysis of shell structures using MSC/NASTRAN’s shell elements with surface normal. In: Proceedings of 1995 MSC World Users’ Conference Universal City, CA, USA

  36. ABAQUS, Version 6.14 (2014) Dassault Systèmes Simulia Corp., Providence, RI, USA

  37. Cook RD, Malcus DS, Plesha ME, Robert JW (2002) Concepts and applications of finite element analysis, 4th edn. London, Wiley

    Google Scholar 

  38. Ibrahimbegović A, Frey F (1993) Geometrically non-linear method of incompatible modes in application to finite elasticity with independent rotations. Int J Numer Methods Eng 36:4185–4200

    Article  MATH  Google Scholar 

  39. Merlini T (1997) A variational formulation for finite elasticity with independent rotation and Biot-axial fields. Comput Mech 19:153–168

    Article  MATH  Google Scholar 

  40. Goto WY, Watanabe Y, Kasugai T, Obata M (1992) Elastic buckling phenomenon applicable to deployable rings. Int J Solids Struct 29(7):893–909

    Article  Google Scholar 

  41. Romero I (2004) The interpolation of rotations and its application to finite element models of geometrically exact rods. Comput Mech 34:121–133

    Article  MathSciNet  MATH  Google Scholar 

  42. Basar Y, Ding Y, Schultz R (1992) Refined shear-deformation models for composite laminates with finite rotations. Int J Solids Struct 30:2611–2638

    Article  MATH  Google Scholar 

  43. Wagner W, Gruttmann F (2005) A robust non-linear mixed hybrid quadrilateral shell element. Int J Numer Methods Eng 64:635–666

    Article  MATH  Google Scholar 

  44. Crisfield MA (1991) Non-linear finite element analysis of solids and structures. Wiley, London

    MATH  Google Scholar 

  45. Betsch P, Gruttmann F, Stein E (1996) A 4-node finite element for the implementation of general hyperelastic 3D-elasticity at finite strains. Comp Methods Appl Mech Eng 130:57–79

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The present investigation was performed with the support of the National Natural Science Foundation of China (No. 11702098), the Project funded by China Postdoctoral Science Foundation (No. 2017M612650) and the Fundamental Research Funds for the Central Universities (No. 2017BQ096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhi Zhong.

Appendix: Expression of element tangent stiffness matrix

Appendix: Expression of element tangent stiffness matrix

Corresponding to the vectors \( {\mathbf{G}}_{int}^{(e)} \) and \( {\mathbf{G}}_{c}^{(e)} \) composing the element residual force vector, the element tangent stiffness matrix is written as

$$ {\mathbf{K}}^{(e)} = {\mathbf{K}}_{int}^{(e)} + {\mathbf{K}}_{c}^{(e)} . $$
(71)

It can be derived from Eq. (43) that

$$ {\mathbf{K}}_{int}^{(e)} = \sum\limits_{i = 1}^{m} {\sum\limits_{j = 1}^{n} {w_{i} w_{j} j_{0ij} \left| {{\mathbf{J}}_{ij} } \right|\left( {{\mathbf{B}}_{ij}^{T} {\mathbf{D}}_{ij} {\mathbf{B}}_{ij} + {\mathbf{C}}_{ij}^{T} {\bar{\mathbf{J}}}_{ij}^{T} {\varvec{\Xi}}_{ij} {\mathbf{B}}_{ij} + {\varvec{\Theta}}_{ij} } \right)} } , $$
(72)

where

$$ {\varvec{\Xi}}_{ij} = \left[ {\begin{array}{*{20}c} {n^{11} {\mathbf{I}}_{3 \times 3} } & {n^{12} {\mathbf{I}}_{3 \times 3} } & {q^{1} {\mathbf{I}}_{3 \times 3} } & {m^{11} {\mathbf{I}}_{3 \times 3} } & {m^{12} {\mathbf{I}}_{3 \times 3} } \\ {n^{12} {\mathbf{I}}_{3 \times 3} } & {n^{22} {\mathbf{I}}_{3 \times 3} } & {q^{2} {\mathbf{I}}_{3 \times 3} } & {m^{12} {\mathbf{I}}_{3 \times 3} } & {m^{22} {\mathbf{I}}_{3 \times 3} } \\ {q^{1} {\mathbf{I}}_{3 \times 3} } & {q^{2} {\mathbf{I}}_{3 \times 3} } & {{\mathbf{0}}_{3 \times 3} } & {{\mathbf{0}}_{3 \times 3} } & {{\mathbf{0}}_{3 \times 3} } \\ {m^{11} {\mathbf{I}}_{3 \times 3} } & {m^{12} {\mathbf{I}}_{3 \times 3} } & {{\mathbf{0}}_{3 \times 3} } & {{\mathbf{0}}_{3 \times 3} } & {{\mathbf{0}}_{3 \times 3} } \\ {m^{12} {\mathbf{I}}_{3 \times 3} } & {m^{22} {\mathbf{I}}_{3 \times 3} } & {{\mathbf{0}}_{3 \times 3} } & {{\mathbf{0}}_{3 \times 3} } & {{\mathbf{0}}_{3 \times 3} } \\ \end{array} } \right] $$
(73)

and

$$ {\varvec{\Theta}}_{ij} = diag\left[ {\begin{array}{*{20}c} \cdots & {\left[ {\begin{array}{*{20}c} {{\mathbf{0}}_{3 \times 3} } & {{\mathbf{0}}_{3 \times 3} } & {{\mathbf{0}}_{3 \times 1} } \\ {{\mathbf{0}}_{3 \times 3} } & {{\bar{\varvec{\varTheta }}}} & {{\mathbf{0}}_{3 \times 1} } \\ {{\mathbf{0}}_{1 \times 3} } & {{\mathbf{0}}_{1 \times 3} } & 0 \\ \end{array} } \right]_{(ij)(kl)} } & \cdots \\ \end{array} } \right] $$
(74)

with

$$ \begin{aligned} {\bar{\varvec{\varTheta }}}_{(ij)(kl)} &= \delta_{ik} \delta_{jl} \left( {q^{1} {\hat{\mathbf{r}}},_{1} + q^{2} {\hat{\mathbf{r}}},_{2} } \right)_{ij} {\hat{\mathbf{t}}}_{kl} \\ & \quad + \delta_{jl} C_{ik}^{(m)} \left[ {\left( {\bar{J}_{11} m^{11} + \bar{J}_{12} m^{12} } \right){\hat{\mathbf{r}}},_{1} + \left( {\bar{J}_{11} m^{12} + \bar{J}_{12} m^{22} } \right){\hat{\mathbf{r}}},_{2} } \right]_{ij} {\hat{\mathbf{t}}}_{kl} \\ & \quad + \delta_{ik} C_{jl}^{(n)} \left[ {\left( {\bar{J}_{21} m^{11} + \bar{J}_{22} m^{12} } \right){\hat{\mathbf{r}}},_{1} + \left( {\bar{J}_{21} m^{12} + \bar{J}_{22} m^{22} } \right){\hat{\mathbf{r}}},_{2} } \right]_{ij} {\hat{\mathbf{t}}}_{kl} \\ \end{aligned} . $$
(75)

The element tangent stiffness matrix related to extended kinematics constraint is obtained from Eq. (56) as

$$ {\mathbf{K}}_{c}^{(e)} = \sum\limits_{i = 1}^{m} {\sum\limits_{j = 1}^{n} {w_{i} w_{j} j_{0ij} \left| {\mathbf{J}} \right|_{ij} {\tilde{\mathbf{B}}}_{ij}^{T} {\mathbf{H}}_{ij} {\tilde{\mathbf{B}}}_{ij} } } $$
(76)

with the matrix

$$ {\mathbf{H}}_{ij} = \left[ {\begin{array}{*{20}c} {{\bar{\mathbf{H}}}_{11} } & \cdots & {{\bar{\mathbf{H}}}_{14} } \\ \vdots & \ddots & \vdots \\ {{\bar{\mathbf{H}}}_{41} } & \cdots & {{\bar{\mathbf{H}}}_{44} } \\ \end{array} } \right]_{ij} . $$
(77)

By introducing the matrix

$$ {\varvec{\Omega}}_{\alpha } = \frac{{3{\varvec{\uptau}}_{\alpha }^{T} {\varvec{\Lambda}}{{\bar{{\varvec{\tau}}}}}_{0} \left( {{\varvec{\uptau}}_{\alpha } \otimes {\varvec{\uptau}}_{\alpha } } \right) - \left\| {{\varvec{\uptau}}_{\alpha } } \right\|^{2} \left( {{\varvec{\Lambda}}{{\bar{{\varvec{\tau}}}}}_{0} \otimes {\varvec{\uptau}}_{\alpha } + {\varvec{\uptau}}_{\alpha } \otimes {\varvec{\Lambda}}{{\bar{{\varvec{\tau}}}}}_{0} + {\varvec{\uptau}}_{\alpha }^{T} {\varvec{\Lambda}}{{\bar{{\varvec{\tau}}}}}_{0} {\mathbf{I}}_{3 \times 3} } \right)}}{{\left\| {{\varvec{\uptau}}_{\alpha } } \right\|^{5} }}, $$
(78)

the sub-matrices in Eq. (77) are given by

$$ {\bar{\mathbf{H}}}_{11} = \lambda {\varvec{\varPhi \varOmega }}_{1} {\varvec{\varPhi ;}} $$
$$ {\bar{\mathbf{H}}}_{22} = \lambda {\varvec{\varPhi \varOmega }}_{2} {\varvec{\Phi}}; $$
$$ \begin{aligned} {\bar{\mathbf{H}}}_{33} &= \lambda {\varvec{\varLambda \hat{\bar{\tau }}}}_{0} {\varvec{\Lambda}}^{T} \left( {{\varvec{\Psi}}_{1} {\varvec{\Upsilon}}_{1} - {\varvec{\Psi}}_{2} {\varvec{\Upsilon}}_{2} } \right){\varvec{\hat{t} + }}\lambda {\varvec{\hat{\bar{\tau }}\varLambda \hat{\bar{\tau }}}}_{0} {\varvec{\Lambda}}^{T} \\ & \quad + \lambda \left[ {{\mathbf{t}} \otimes \left( {{\varvec{\Upsilon}}_{2}^{T} {\varvec{\Psi}}_{2} - {\varvec{\Upsilon}}_{1}^{T} {\varvec{\Psi}}_{1} } \right){\varvec{\Lambda}}{\bar{\varvec{\tau }}}_{0} - {\mathbf{t}}^{T} \left( {{\varvec{\Upsilon}}_{2}^{T} {\varvec{\Psi}}_{2} - {\varvec{\Upsilon}}_{1}^{T} {\varvec{\Psi}}_{1} } \right){\varvec{\Lambda}}{\bar{\varvec{\tau }}}_{0} {\mathbf{I}}_{3 \times 3} } \right] \\ & \quad - \lambda {\hat{\mathbf{t}}}\left( {{\mathbf{r}},_{2} \otimes {\varvec{\Psi}}_{2} {\varvec{\Lambda}}{\bar{\varvec{\tau }}}_{0} + {\varvec{\Psi}}_{2} {\varvec{\Lambda}}{\bar{\varvec{\tau }}}_{0} \otimes {\mathbf{r}},_{2} + {\mathbf{r}},_{1} \otimes {\varvec{\Psi}}_{1} {\varvec{\Lambda}}{\bar{\varvec{\tau }}}_{0} + {\varvec{\Psi}}_{1} {\varvec{\Lambda}}{\bar{\varvec{\tau }}}_{0} \otimes {\mathbf{r}},_{1} } \right){\hat{\mathbf{t}}} \\ & \quad + \lambda {\hat{\mathbf{t}}}\left( {{\varvec{\Upsilon}}_{2}^{T} {\varvec{\Omega}}_{2} {\varvec{\Upsilon}}_{2} - {\varvec{\Upsilon}}_{1}^{T} {\varvec{\Omega}}_{1} {\varvec{\Upsilon}}_{1} } \right){\hat{\mathbf{t}}} - \lambda {\hat{\mathbf{t}}}\left[ {{\varvec{\Upsilon}}_{2}^{T} {\varvec{\Psi}}_{2} - {\varvec{\Upsilon}}_{1}^{T} {\varvec{\Psi}}_{1} } \right]{\varvec{\Lambda}}{\varvec{\hat{\bar{\tau }}}}_{0} {\varvec{\Lambda}}^{T} ; \\ \end{aligned} $$
$$ \begin{aligned} & {\bar{\mathbf{H}}}_{44} = 0; \\ & {\bar{\mathbf{H}}}_{12} = {\bar{\mathbf{H}}}_{21} = {\mathbf{0}}_{3 \times 3} ; \\ \end{aligned} $$
(79)
$$ {\bar{\mathbf{H}}}_{13} = {\bar{\mathbf{H}}}_{31}^{T} = \lambda {\varvec{\varPhi \varOmega }}_{1} {\varvec{\Upsilon}}_{1} {\hat{\mathbf{t}}} + \lambda {\mathbf{t}}^{T} {\varvec{\Psi}}_{1} {\varvec{\Lambda}}{{\bar{{\varvec{\tau}}}}}_{0} {\hat{\mathbf{t}}} - \lambda {\mathbf{t}} \otimes {\varvec{\hat{t}\varPsi }}_{1} {\varvec{\Lambda}}{{\bar{{\varvec{\tau}}}}}_{0} - \lambda {\varvec{\varPhi \varPsi }}_{1} {\varvec{\Lambda}}{{\hat{\bar{\varvec{\tau }}}}}_{0} {\varvec{\Lambda}}^{T} ; $$
$$ {\bar{\mathbf{H}}}_{14} = {\bar{\mathbf{H}}}_{41}^{T} = {\varvec{\varPhi \varPsi }}_{1} {\varvec{\Lambda}}{{\bar{{\varvec{\tau}}}}}_{0} ; $$
$$ {\bar{\mathbf{H}}}_{23} = {\bar{\mathbf{H}}}_{32}^{T} = \lambda {\varvec{\varPhi \varPsi }}_{2} {\varvec{\Lambda}}{{\hat{\bar{\varvec{\tau }}}}}_{0} {\varvec{\Lambda}}^{T} - \lambda {\varvec{\varPhi \varOmega }}_{2} {\varvec{\Upsilon}}_{2} {\hat{\mathbf{t}}} - \lambda {\mathbf{t}}^{T} {\varvec{\Psi}}_{2} {\varvec{\Lambda}}{{\bar{{\varvec{\tau}}}}}_{0} {\hat{\mathbf{t}}} - \lambda \left( {{\mathbf{t}} \otimes {\varvec{\Psi}}_{2} {\varvec{\Lambda}}{{\bar{{\varvec{\tau}}}}}_{0} } \right){\hat{\mathbf{t}}}; $$
$$ {\bar{\mathbf{H}}}_{24} = {\bar{\mathbf{H}}}_{42}^{T} = - {\varvec{\varPhi \varPsi }}_{2} {\varvec{\varLambda \bar{\tau }}}_{0} ; $$
$$ {\bar{\mathbf{H}}}_{34} = {\bar{\mathbf{H}}}_{43}^{T} = - {{\hat{\bar{\varvec{\tau }}}}}{\varvec{\Lambda}}{{\bar{{\varvec{\tau}}}}}_{0} + {\hat{\mathbf{t}}}\left[ {{\varvec{\Upsilon}}_{2}^{T} {\varvec{\Psi}}_{2} - {\varvec{\Upsilon}}_{1}^{T} {\varvec{\Psi}}_{1} } \right]{\varvec{\Lambda}}{{\bar{{\varvec{\tau}}}}}_{0}. $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Zhong, H. & Yao, X. A weak form quadrature element formulation of geometrically exact shells incorporating drilling degrees of freedom. Comput Mech 63, 663–679 (2019). https://doi.org/10.1007/s00466-018-1615-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-018-1615-4

Keywords