Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

A generalized Bayesian regularization network approach on characterization of geometric defects in lattice structures for topology optimization in preliminary design of 3D printing

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this work, we developed a Generalized Bayesian Regularization Network (GBRN) approach that can quantitatively identify the defect shapes and locations by mapping the distorted lattice structure to its original designed configuration, making registration between manufactured parts with defects and the perfect design models in the preliminary design stage of 3D printing.. On the one hand, it shows the proposed GBRN method has quantitatively comparable accuracy to the Coherent Point Drift (CPD) method in 2D boundary points registration problems. On the other hand, we have shown that the proposed GBRN method can find the possible geometric defects in the 3D printed lattice structure model and identify inherent defect-prone lattice structure parameters with obvious advantages over those two-dimensional point registration methods, i.e., coherent point drift (CPD) method, in registration of interior points of 3D lattice structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. In designing and 3D printed samples, there are always points mismatch, i.e., points of design models \(\varvec{X}_i, i=1,2,\ldots ,N\) and manufactured points \(\varvec{y}_j, j=1,2,\ldots ,M\) [26].

References

  1. Atzeni E, Salmi A (2012) Economics of additive manufacturing for end-usable metal parts. Int J Adv Manuf Technol 62(9–12):1147

    Article  Google Scholar 

  2. Dong L, Deshpande V, Wadley H (2015) Mechanical response of Ti–6Al–4V octet-truss lattice structures. Int J Solids Struct 60:107

    Article  Google Scholar 

  3. Leary M, Mazur M, Elambasseril J, McMillan M, Chirent T, Sun Y, Qian M, Easton M, Brandt M (2016) Selective laser melting (SLM) of AlSi12Mg lattice structures. Mater Design 98:344

    Article  Google Scholar 

  4. Leary M, Merli L, Torti F, Mazur M, Brandt M (2014) Optimal topology for additive manufacture: a method for enabling additive manufacture of support-free optimal structures. Mater Design 63:678

    Article  Google Scholar 

  5. Pei X, Zhang B, Fan Y, Zhu X, Sun Y, Wang Q, Zhang X, Zhou C (2017) Bionic mechanical design of titanium bone tissue implants and 3D printing manufacture. Mater Lett 208:133

    Article  Google Scholar 

  6. Yang L, Harrysson O, West H, Cormier D (2013) Modeling of uniaxial compression in a 3D periodic re-entrant lattice structure. J Mater Sci 48(4):1413

    Article  Google Scholar 

  7. Wong ZJ, Wang Y, O’Brien K, Rho J, Yin X, Zhang S, Fang N, Yen TJ, Zhang X (2017) Optical and acoustic metamaterials: superlens, negative refractive index and invisibility cloak. J Opt 19(8):084007

    Article  Google Scholar 

  8. Zhu R, Liu X, Hu G, Sun C, Huang G (2014) Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial. Nat Commun 5(1):1

    Google Scholar 

  9. Wang Q, Jackson JA, Ge Q, Hopkins JB, Spadaccini C, Fang NX (2016) Lightweight mechanical metamaterials with tunable negative thermal expansion. Phys Rev Lett 117(17):175901

    Article  Google Scholar 

  10. Wu L, Li B, Zhou J (2016) Isotropic negative thermal expansion metamaterials. ACS Appl Mater Interfaces 8(27):17721

    Article  Google Scholar 

  11. Smith D, Vier D, Koschny T, Soukoulis C (2005) Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E 71(3):036617

    Article  Google Scholar 

  12. Shelby R, Smith DR, Schultz S (2001) Experimental verification of a negative index of refraction. science 292(5514):77

    Article  Google Scholar 

  13. Gong H, Rafi K, Gu H, Starr T, Stucker B (2014) Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes. Addit Manuf 1:87

    Google Scholar 

  14. Hedayati R, Janbaz S, Sadighi M, Mohammadi-Aghdam M, Zadpoor A (2017) How does tissue regeneration influence the mechanical behavior of additively manufactured porous biomaterials? J Mech Behav Biomed Mater 65:831

    Article  Google Scholar 

  15. McMillan M, Jurg M, Leary M, Brandt M (2015) Programmatic lattice generation for additive manufacture. Procedia Technol 20:178

    Article  Google Scholar 

  16. Qiu C, Yue S, Adkins NJ, Ward M, Hassanin H, Lee PD, Withers PJ, Attallah MM (2015) Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser melting. Mater Sci Eng, A 628:188

    Article  Google Scholar 

  17. Ren X, Shen J, Tran P, Ngo TD, Xie YM (2018) Auxetic nail: design and experimental study. Compos Struct 184:288

    Article  Google Scholar 

  18. Arabnejad S, Johnston RB, Pura JA, Singh B, Tanzer M, Pasini D (2016) High-strength porous biomaterials for bone replacement: a strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints. Acta Biomater 30:345

    Article  Google Scholar 

  19. Luxner MH, Stampfl J, Pettermann HE (2005) Finite element modeling concepts and linear analyses of 3D regular open cell structures. J Mater Sci 40(22):5859

    Article  Google Scholar 

  20. Mower TM, Long MJ (2016) Mechanical behavior of additive manufactured, powder-bed laser-fused materials. Mater Sci Eng, A 651:198

    Article  Google Scholar 

  21. Read N, Wang W, Essa K, Attallah MM (2015) Selective laser melting of AlSi10Mg alloy: process optimisation and mechanical properties development. Mater Design (1980–2015) 65:417

    Article  Google Scholar 

  22. Fang M, Chen B (2016) Fabrication of high porosity Cu-based structure using direct laser sintering. Rapid Prototyp J (22)1:207–214

  23. Kadkhodapour J, Montazerian H, Darabi AC, Anaraki A, Ahmadi S, Zadpoor A, Schmauder S (2015) Failure mechanisms of additively manufactured porous biomaterials: effects of porosity and type of unit cell. J Mech Behav Biomed Mater 50:180

    Article  Google Scholar 

  24. Markl M, Körner C (2016) Multiscale modeling of powder bed–based additive manufacturing. Annu Rev Mater Res 46:93

    Article  Google Scholar 

  25. Wang C, Li S, Zeng D, Zhu X (2021) Quantification and compensation of thermal distortion in additive manufacturing: a computational statistics approach. Comput Methods Appl Mech Eng 375:113611

    Article  MathSciNet  Google Scholar 

  26. Xie Y, Li B, Wang C, Zhou K, Wu C, Li S From Point Set Registration to 3D Printing: A Bayesian Regularization Network Approach to Thermal Distortion Control, Submitted pp. 1–17

  27. Broomhead DS, Lowe D (1988) Multivariable functional interpolation and adaptive networks. Complex Syst 2:321–355

    MathSciNet  MATH  Google Scholar 

  28. Caprile B, Girosi F (1990) A nondeterministic minimization algorithm. Tech. Rep. A.I. Memo No. 1254, Massachusetts Institute of Technology, Artificial Intelligence Laboratory

  29. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671

    Article  MathSciNet  Google Scholar 

  30. Li S, Liu WK (2007) Meshfree particle methods. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  31. Moody J, Darken CJ (1989) Fast learning in networks of locally-tuned processing units. Neural Comput 1(2):281

    Article  Google Scholar 

  32. Myronenko A, Song X (2010) Point set registration: coherent point drift. IEEE Trans Pattern Anal Mach Intell 32(12):2262

    Article  Google Scholar 

  33. Bookstein FL (1989) Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Trans Pattern Anal Mach Intell 11(6):567

    Article  Google Scholar 

  34. McNeel R (2020) Rhino-Grasshopper. http://www.rhino3d.com/

  35. Porterfield A (2019) Crystallon. http://www.food4rhino.com/app/crystallon

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaofan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Linear system with approximate radial basis function

The variational functional is shown as

$$\begin{aligned} H \left[ \varvec{\varPsi } \right] = \sum _{i=1}^N \left\| \varvec{x}_i - \varvec{\varPsi }\left( \varvec{X}_i \right) \right\| ^2 + \lambda \phi \left( \varvec{\varPsi } \right) \end{aligned}$$
(20)

and the solution to Eq. (20) with approximate radial basis function is

$$\begin{aligned} \varvec{\varPsi }^{*} \left( \varvec{X} \right) = \sum _{\alpha =1}^n \varvec{c}_{\alpha } G \left( \varvec{X}-\varvec{t}_{\alpha } \right) \end{aligned}$$
(21)

The Eq. (21) is substituted back Eq. (20), one is to have

$$\begin{aligned} H\left[ \varvec{\varPsi }^{*} \right] = \sum _{i=1}^N \left\| \varvec{x}_i - \sum _{\alpha =1}^n \varvec{c}_{\alpha } G \left( \varvec{X}_i-\varvec{t}_{\alpha } \right) \right\| ^2 + \lambda \phi \left( \varvec{\varPsi }^{*} \left( \varvec{X} \right) \right) \end{aligned}$$
(22)

The smoothness constraint (second term) has the formula as

$$\begin{aligned} \phi \left( \varvec{\varPsi }^{*} \left( \varvec{X} \right) \right) = \int _{{\mathbb {R}}^d} \frac{ \left\| \tilde{\varvec{\varPsi }}^{*}\left( \varvec{s} \right) \right\| ^2}{{\tilde{G}}\left( \varvec{s} \right) } d\varvec{s} = \int _{{\mathbb {R}}^d} \frac{ \tilde{\varvec{\varPsi }}^{*}\left( \varvec{s} \right) \tilde{\varvec{\varPsi }}^{*}\left( \varvec{-s} \right) }{{\tilde{G}}\left( \varvec{s} \right) } d\varvec{s} \end{aligned}$$

since \(\tilde{\varvec{\varPsi }}^{*}\left( \varvec{s} \right) = \tilde{\varvec{\varPsi }}^{*}\left( \varvec{-s} \right) \) for \(\varvec{\varPsi }^{*}\) is real.

in which,

$$\begin{aligned} \tilde{\varvec{\varPsi }}^{*} \left( \varvec{s} \right)= & {} \int _{{\mathbb {R}}^d} \varvec{\varPsi }^{*} \left( \varvec{t} \right) e^{-i\varvec{t} \cdot \varvec{s}} d\varvec{t} \\= & {} \frac{\int _{{\mathbb {R}}^d} \sum _{\alpha =1}^n \varvec{c}_{\alpha } G \left( \varvec{t}-\varvec{t}_{\alpha } \right) e^{-i \varvec{t}\cdot \varvec{s}} d\varvec{t} \cdot e^{i\varvec{t}_{\alpha }\cdot \varvec{s}} }{e^{i\varvec{t}_{\alpha }\cdot \varvec{s}}} \\= & {} \sum _{\alpha =1}^n \varvec{c}_{\alpha } \int _{{\mathbb {R}}^d} G \left( \varvec{t}-\varvec{t}_{\alpha } \right) e^{-i \left( \varvec{t}-\varvec{t}_{\alpha } \right) \cdot \varvec{s}} d \left( \varvec{t}-\varvec{t}_{\alpha } \right) \cdot e^{-i \varvec{t}_{\alpha }\cdot \varvec{s}} \\= & {} \sum _{\alpha =1}^n \varvec{c}_{\alpha } {\tilde{G}} \left( \varvec{s} \right) e^{-i\varvec{t}_{\alpha }\cdot \varvec{s}}~. \end{aligned}$$

and

$$\begin{aligned} \tilde{\varvec{\varPsi }}^{*} \left( -\varvec{s} \right)= & {} \int _{{\mathbb {R}}^d} \varvec{\varPsi }^{*} \left( \varvec{t} \right) e^{-i\varvec{t} \cdot \left( -\varvec{s} \right) } d\varvec{t} \\= & {} \frac{\int _{{\mathbb {R}}^d} \sum _{\beta =1}^n \varvec{c}_{\beta } G \left( \varvec{t}-\varvec{t}_{\beta } \right) e^{-i\varvec{t} \cdot \left( -\varvec{s} \right) } d\varvec{t} \cdot e^{i\varvec{t}_{\beta }\cdot \left( -\varvec{s} \right) } }{e^{i\varvec{t}_{\beta }\cdot \left( -\varvec{s} \right) }} \\= & {} \sum _{\beta =1}^n \varvec{c}_{\beta } \int _{{\mathbb {R}}^d} G \left( \varvec{t}-\varvec{t}_{\beta } \right) e^{-i\left( \varvec{t}-\varvec{t}_{\beta } \right) \cdot \left( -\varvec{s} \right) } d\left( \varvec{t}-\varvec{t}_{\beta } \right) \cdot e^{i\varvec{t}_{\beta }\cdot \varvec{s}} \\= & {} \sum _{\beta =1}^n \varvec{c}_{\beta } {\tilde{G}} \left( -\varvec{s} \right) e^{i\varvec{t}_{\beta }\cdot \varvec{s}} ~. \end{aligned}$$

Therefore, the regularization term can be written as

$$\begin{aligned}&\int _{{\mathbb {R}}^d} \frac{\left\| \tilde{\varvec{\varPsi }}^{*} \left( \varvec{s} \right) \right\| ^2}{{\tilde{G}}\left( \varvec{s} \right) } d\varvec{s} \nonumber \\&\quad = \int _{{\mathbb {R}}^d} \frac{ \left[ \sum _{\alpha =1}^n \varvec{c}_{\alpha } {\tilde{G}}\left( \varvec{s} \right) e^{-i\varvec{t}_{\alpha }\cdot \varvec{s}} \right] \cdot \left[ \sum _{\beta =1}^n \varvec{c}_{\beta } {\tilde{G}}\left( -\varvec{s} \right) e^{i\varvec{t}_{\beta }\cdot \varvec{s}} \right] }{{\tilde{G}}\left( \varvec{s} \right) } d\varvec{s} \nonumber \\&\quad = \int _{{\mathbb {R}}^d} \frac{\sum _{\alpha ,\beta =1}^n \varvec{c}_{\alpha } \cdot \varvec{c}_{\beta } {\tilde{G}}\left( \varvec{s} \right) {\tilde{G}}\left( -\varvec{s} \right) \cdot e^{i\varvec{s}\left( \varvec{t}_{\beta }-\varvec{t}_{\alpha } \right) } }{{\tilde{G}}\left( \varvec{s} \right) } d\varvec{s} \nonumber \\&\quad = \sum _{\alpha ,\beta =1}^n \varvec{c}_{\alpha } \cdot \varvec{c}_{\beta } \int _{{\mathbb {R}}^d} d\varvec{s} \cdot e^{i\varvec{s}\cdot \left( \varvec{t}_{\beta }-\varvec{t}_{\alpha } \right) } {\tilde{G}}\left( -\varvec{s} \right) \nonumber \\&\quad = \sum _{\alpha ,\beta =1}^n \varvec{c}_{\alpha } \cdot \varvec{c}_{\beta } G \left( \varvec{t}_{\alpha } - \varvec{t}_{\beta } \right) ~. \end{aligned}$$
(23)

Then, Eq. (22) can be converted as

$$\begin{aligned} H\left[ \varvec{\varPsi }^{*} \right]&= \sum _{i=1}^N \left\| \varvec{x}_i - \sum _{\alpha =1}^n \varvec{c}_{\alpha } G \left( \varvec{X}-\varvec{t}_{\alpha } \right) \right\| ^2 \nonumber \\&\quad + \lambda \sum _{\alpha ,\beta =1}^n \varvec{c}_{\alpha }\cdot \varvec{c}_{\beta } G \left( \varvec{t}_{\alpha }-\varvec{t}_{\beta } \right) \end{aligned}$$
(24)

Then taking derivative of Eq. (24) with respect to \(\varvec{c}_{\gamma }\) yields,

$$\begin{aligned} \frac{\partial H\left[ \varvec{\varPsi }^{*} \right] }{\partial \varvec{c}_{\gamma }}= & {} \sum _{i=1}^N 2 \left[ \varvec{x}_i - \sum _{\alpha =1}^n \varvec{c}_{\alpha } G \left( \varvec{X}_i-\varvec{t}_{\alpha } \right) \right] \\&\quad \cdot \bigg [-G \left( \varvec{X}_i -\varvec{t}_{\gamma } \right) \bigg ] + 2 \lambda \sum _{\alpha =1}^n \varvec{c}_{\alpha } \cdot G \left( \varvec{t}_{\alpha }-\varvec{t}_{\beta } \right) \\= & {} -\sum _{i=1}^N \varvec{x}_i \cdot G \left( \varvec{X}_i-\varvec{t}_{\gamma } \right) + \sum _{i=1}^N \sum _{\alpha =1}^n \varvec{c}_{\alpha } G \left( \varvec{X}_i-\varvec{t}_{\alpha } \right) \\&\quad \cdot G \left( \varvec{X}_i-\varvec{t}_{\gamma } \right) + \lambda \sum _{\alpha =1}^n \varvec{c}_{\alpha } G \left( \varvec{t}_{\alpha }-\varvec{t}_{\gamma } \right) = \varvec{0} \end{aligned}$$

It can be written in a matrix form as follows,

$$\begin{aligned} \varvec{G}^T \varvec{G} \varvec{c} + \lambda \varvec{g} \varvec{c} = \varvec{G}^T \varvec{x} \end{aligned}$$
(25)

in which,

$$\begin{aligned} \varvec{c}= & {} \left[ \varvec{c}_1, \varvec{c}_2, \ldots , \varvec{c}_n \right] ^T, \quad \varvec{x} =\left[ \varvec{x}_1, \varvec{x}_2, \ldots , \varvec{x}_N \right] ^T\\ \varvec{G}_{N\times n}= & {} \begin{bmatrix} G\left( \varvec{X}_1-\varvec{t}_1 \right) &{} G\left( \varvec{X}_1-\varvec{t}_2 \right) &{} \cdots &{} G\left( \varvec{X}_1-\varvec{t}_n \right) \\ G\left( \varvec{X}_2-\varvec{t}_1 \right) &{} G\left( \varvec{X}_2-\varvec{t}_2 \right) &{} \cdots &{} G\left( \varvec{X}_2-\varvec{t}_n \right) \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ G\left( \varvec{X}_N-\varvec{t}_1 \right) &{} G\left( \varvec{X}_N-\varvec{t}_2 \right) &{} \cdots &{} G\left( \varvec{X}_N-\varvec{t}_n \right) \end{bmatrix}\\ \varvec{g}_{n \times n}= & {} \begin{bmatrix} G\left( \varvec{t}_1-\varvec{t}_1 \right) &{} G\left( \varvec{t}_1-\varvec{t}_2 \right) &{} \cdots &{} G\left( \varvec{t}_1-\varvec{t}_n \right) \\ G\left( \varvec{t}_2-\varvec{t}_1 \right) &{} G\left( \varvec{t}_2-\varvec{t}_2 \right) &{} \cdots &{} G\left( \varvec{t}_2-\varvec{t}_n \right) \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ G\left( \varvec{t}_n-\varvec{t}_1 \right) &{} G\left( \varvec{t}_n-\varvec{t}_2 \right) &{} \cdots &{} G\left( \varvec{t}_n-\varvec{t}_n \right) \end{bmatrix}~. \end{aligned}$$

Appendix B. The derivative of \(H_{{\mathbf {w}}}\left[ \varvec{\varPsi }^{*} \right] \) with \(\varvec{W}\)

The weighted variational functional is given as follows,

$$\begin{aligned} H_{{\mathbf {w}}} \left[ \varvec{\varPsi }^{*} \right] = \sum _{i=1}^N \left\| \sum _{\alpha =1}^n \varvec{c}_{\alpha } G\left( \varvec{W}\varvec{X}-\varvec{W}\varvec{t}_{\alpha } \right) - \varvec{x}_i \right\| ^2 + \lambda \phi \left[ \varvec{\varPsi }^{*} \left( \varvec{W}\varvec{X} \right) \right] \end{aligned}$$
(26)

The regularization term can be converted as

$$\begin{aligned}&\phi \left[ \varvec{\varPhi }^{*} \left( \varvec{W}\varvec{X} \right) \right] = \int _{{\mathbb {R}}^d} \frac{\left\| \tilde{\varvec{\varPhi }}^{*} \left( \varvec{W}\varvec{s} \right) \right\| ^2}{{\tilde{G}}\left( \varvec{W}\varvec{s} \right) } d\varvec{W}\varvec{s} \\&\quad = \int _{{\mathbb {R}}^d} \frac{ \tilde{\varvec{\varPhi }}^{*} \left( \varvec{W}\varvec{s} \right) \cdot \tilde{\varvec{\varPhi }}^{*} \left( -\varvec{W}\varvec{s} \right) }{{\tilde{G}}\left( \varvec{W}\varvec{s} \right) } d\varvec{W}\varvec{s} \end{aligned}$$

in which,

$$\begin{aligned}&\tilde{\varvec{\varPhi }}^{*} \left( \varvec{W}\varvec{s} \right) = \int _{{\mathbb {R}}^d} \varvec{\varPhi }^{*} \left( \varvec{W}\varvec{t} \right) e^{-i\left( \varvec{W}\varvec{t} \right) \cdot \left( \varvec{W}\varvec{s} \right) } d\varvec{W}\varvec{t} \\&\quad = \frac{ \int _{{\mathbb {R}}^d} \sum _{\alpha =1}^n \varvec{c}_{\alpha } G \left( \varvec{W}\varvec{t}-\varvec{W}\varvec{t}_{\alpha } \right) e^{-i\left( \varvec{W}\varvec{t} \right) \cdot \left( \varvec{W}\varvec{s} \right) } d\varvec{W}\varvec{t} \cdot e^{i\left( \varvec{W}\varvec{t}_{\alpha } \right) \cdot \left( \varvec{W}\varvec{s} \right) } }{e^{i\left( \varvec{W}\varvec{t}_{\alpha } \right) \cdot \left( \varvec{W}\varvec{s} \right) }} \\&\quad = \sum \nolimits _{\alpha =1}^n \varvec{c}_{\alpha } \int _{{\mathbb {R}}^d} G\left( \varvec{W}\varvec{t}-\varvec{W}\varvec{t}_{\alpha } \right) e^{-i \left( \varvec{W}\varvec{t}-\varvec{W}\varvec{t}_{\alpha } \right) \cdot \varvec{W}\varvec{s}} d\left( \varvec{W}\varvec{t}-\varvec{W}\varvec{t}_{\alpha } \right) \\&\quad \cdot e^{-i\varvec{W}\varvec{t}_{\alpha }\cdot \varvec{W}\varvec{s}} \\&\quad = \sum _{\alpha =1}^n \varvec{c}_{\alpha } {\tilde{G}} \left( \varvec{W}\varvec{s} \right) e^{-i\varvec{W}\varvec{t}_{\alpha } \cdot \varvec{W}\varvec{s}} \end{aligned}$$

and

$$\begin{aligned}&\tilde{\varvec{\varPhi }}^{*} \left( -\varvec{W}\varvec{s} \right) = \int _{{\mathbb {R}}^d} \varvec{\varPhi }^{*} \left( \varvec{W}\varvec{t} \right) e^{-i\left( \varvec{W}\varvec{t} \right) \cdot \left( -\varvec{W}\varvec{s} \right) } d\left( \varvec{W}\varvec{t} \right) \\&\quad = \frac{ \int _{{\mathbb {R}}^d} \sum _{\beta =1}^n \varvec{c}_{\beta } G\left( \varvec{W}\varvec{t}-\varvec{W}\varvec{t}_{\beta } \right) e^{-i \varvec{W}\varvec{t}\cdot \left( -\varvec{W}\varvec{s} \right) }d\varvec{W}\varvec{t} \cdot e^{i\varvec{W}\varvec{t}_{\beta }\cdot \left( -\varvec{W}\varvec{s} \right) } }{e^{i\varvec{W}\varvec{t}_{\beta }\cdot \left( -\varvec{W}\varvec{s} \right) }} \\&\quad = \sum \nolimits _{\beta =1}^n \varvec{c}_{\beta } \int _{{\mathbb {R}}^d} G \left( \varvec{W}\varvec{t}-\varvec{W}\varvec{t}_{\beta } \right) e^{-i\varvec{W}\left( \varvec{t}-\varvec{t}_{\beta } \right) \cdot \left( -\varvec{W}\varvec{s} \right) } d\varvec{W}\left( \varvec{t}-\varvec{t}_{\beta } \right) \\&\qquad \cdot e^{i\left( \varvec{W}\varvec{t}_{\beta } \right) \cdot \left( \varvec{W}\varvec{s} \right) } \\&\quad = \sum \nolimits _{\beta =1}^n \varvec{c}_{\beta } {\tilde{G}}\left( -\varvec{W}\varvec{s} \right) e^{i\varvec{W}\varvec{t}_{\beta }\cdot \varvec{W}\varvec{s}} \end{aligned}$$

Therefore, the weighted smoothness constraint term can be written as

$$\begin{aligned}&\int _{{\mathbb {R}}^d} \frac{\left\| \tilde{\varvec{\varPsi }}^{*} \left( \varvec{s} \right) \right\| ^2}{{\tilde{G}}\left( \varvec{W}\varvec{s} \right) } d\varvec{W}\varvec{s} \nonumber \\&\quad = \int _{{\mathbb {R}}^d} \frac{ \left[ \sum _{\alpha =1}^n \varvec{c}_{\alpha } {\tilde{G}}\left( \varvec{W}\varvec{s} \right) e^{-i\varvec{W}\varvec{t}_{\alpha }\cdot \varvec{W}\varvec{s}} \right] \cdot \left[ \sum _{\beta =1}^n \varvec{c}_{\beta } {\tilde{G}}\left( -\varvec{W}\varvec{s} \right) e^{i\varvec{W}\varvec{t}_{\beta }\cdot \varvec{W}\varvec{s}} \right] }{{\tilde{G}}\left( \varvec{W}\varvec{s} \right) } d\varvec{W}\varvec{s} \nonumber \\&\quad = \int _{{\mathbb {R}}^d} \frac{\sum _{\alpha ,\beta =1}^n \varvec{c}_{\alpha } \cdot \varvec{c}_{\beta } {\tilde{G}} \left( \varvec{W}\varvec{s} \right) {\tilde{G}}\left( -\varvec{W}\varvec{s} \right) e^{i\varvec{W}\varvec{s}\cdot \varvec{W}\left( \varvec{t}_{\beta }-\varvec{t}_{\alpha } \right) } d\varvec{W}\varvec{s} }{ {\tilde{G}}\left( \varvec{W}\varvec{s} \right) } \nonumber \\&\quad = \sum _{\alpha ,\beta =1}^n \varvec{c}_{\alpha }\cdot \varvec{c}_{\beta } \int _{{\mathbb {R}}^d} d\varvec{W}\varvec{s} \cdot e^{i\varvec{W}\varvec{s}\cdot \varvec{W}\left( \varvec{t}_{\beta }-\varvec{t}_{\alpha } \right) } {\tilde{G}}\left( -\varvec{W}\varvec{s} \right) \nonumber \\&\quad = \sum _{\alpha ,\beta =1}^n \varvec{c}_{\alpha } \cdot \varvec{c}_{\beta } G\left( \varvec{W}\varvec{t}_{\alpha }-\varvec{W}\varvec{t}_{\beta } \right) \end{aligned}$$
(27)

Subsequently, Eq. (26) can be converted as

$$\begin{aligned} H_{{\mathbf {w}}} \left[ \varvec{\varPsi }^{*} \right]= & {} \sum _{i=1}^N \left\| \varvec{x}_i - \sum _{\alpha =1}^n \varvec{c}_{\alpha } G\left( \varvec{W}\varvec{X}-\varvec{W}\varvec{t}_{\alpha } \right) \right\| ^2 \nonumber \\&\quad + \lambda \sum _{\alpha ,\beta =1}^n \varvec{c}_{\alpha } \cdot \varvec{c}_{\beta } G\left( \varvec{W}\varvec{t}_{\alpha }-\varvec{W}\varvec{t}_{\beta } \right) \end{aligned}$$
(28)

Then taking derivative of Eq. (28) with respect to \(\varvec{W}\) yields,

$$\begin{aligned} \frac{\partial H_{{\mathbf {w}}}\left[ \varvec{\varPsi }^{*} \right] }{\partial \varvec{W}}= & {} \sum _{i=1}^N 2 \left[ \varvec{x}_i - \sum _{\alpha =1}^n \varvec{c}_{\alpha } G\left( \varvec{W}\varvec{X}-\varvec{W}\varvec{t}_{\alpha } \right) \right] \nonumber \\&\cdot \left[ -\sum _{\alpha =1}^n \varvec{c}_{\alpha } G^{\prime }\left( \varvec{W}\varvec{X}-\varvec{W}\varvec{t}_{\alpha } \right) \right. \nonumber \\&\quad \left. \cdot \left( \varvec{W}\varvec{X}-\varvec{W}\varvec{t}_{\alpha } \right) \cdot \left( \varvec{X}-\varvec{t}_{\alpha } \right) \right] \nonumber \\&+ \sum _{\alpha ,\beta =1}^n \varvec{c}_{\alpha } \cdot \varvec{c}_{\beta } G^{\prime } \left( \varvec{W}\varvec{t}_{\alpha }-\varvec{W}\varvec{t}_{\beta } \right) \nonumber \\&\quad \cdot \varvec{W}\left( \varvec{t}_{\alpha }-\varvec{t}_{\beta } \right) \cdot \left( \varvec{t}_{\alpha }-\varvec{t}_{\beta } \right) = \varvec{0} \end{aligned}$$
(29)

So that we can have

$$\begin{aligned} \frac{\partial H_{{\mathbf {w}}} \left[ \varvec{\varPsi }^{*} \right] }{\partial \varvec{W}} =&\sum _{i=1}^N 2 \left[ \varvec{x}_i - \sum _{\alpha =1}^n \varvec{c}_{\alpha } G \left( \varvec{W}\varvec{X}_i - \varvec{W}\varvec{t}_{\alpha } \right) \right] \nonumber \\&\cdot \left[ - \sum _{\alpha =1}^n \varvec{c}_{\alpha } G^{\prime }\left( \varvec{W}\varvec{X}_i-\varvec{W}\varvec{t}_{\alpha } \right) \right. \nonumber \\&\quad \left. \cdot \varvec{W}:\left( \varvec{X}_i-\varvec{t}_{\alpha } \right) \otimes \left( \varvec{X}_i-\varvec{t}_{\alpha } \right) \right] \nonumber \\&+ \sum _{\alpha ,\beta =1}^n \varvec{c}_{\alpha } \varvec{c}_{\beta } G^{\prime } \left( \varvec{W}\varvec{t}_{\alpha }-\varvec{W}\varvec{t}_{\beta } \right) \nonumber \\&\quad \cdot \varvec{W}:\left( \varvec{t}_{\alpha }-\varvec{t}_{\beta } \right) \otimes \left( \varvec{t}_{\alpha }-\varvec{t}_{\beta } \right) = \varvec{0} \end{aligned}$$
(30)

Appendix C. Derivative of \({\tilde{Q}}\) with respect to \(\varvec{C}\)

First, the derivative of \({\tilde{Q}}\) with respect to \(\varvec{C}\) can be shown as,

$$\begin{aligned} \frac{\partial {\tilde{Q}}}{\partial \varvec{C}}= & {} \frac{\partial }{\partial \varvec{C}} \sum _{i=1}^N \sum _{j=1}^M \phi _j \left( \varvec{y}_{old} | \varvec{X}_i \right) \\&\quad \frac{\left\| \varvec{X}_i - \sum _{\alpha =1}^q \varvec{c}_{\alpha } G\left( \varvec{y}_{0j}-\hat{\varvec{y}}_{0\alpha } \right) \right\| ^2}{2\sigma _j^2} \\&\quad + \lambda \frac{\partial }{\partial \varvec{C}} \mathbf{Tr} \left( \varvec{C}^T \varvec{g} \varvec{C} \right) \end{aligned}$$

For the first term, we shall consider the derivative with one element of matrix \(\varvec{C}\), i.e., \(\varvec{c}_r\),

$$\begin{aligned}&\frac{\partial }{\partial \varvec{c}_r} \sum _{i=1}^N \sum _{j=1}^M \phi _j \left( \varvec{y}_{old}|\varvec{X}_i \right) \frac{\left\| \varvec{X}_i-\sum _{\alpha =1}^q \varvec{c}_{\alpha } G\left( \varvec{y}_{0j}-\hat{\varvec{y}}_{0\alpha } \right) \right\| ^2}{2\sigma _j^2} \\= & {} \sum _{i=1}^N \sum _{j=1}^M \phi _j \left( \varvec{y}_{old}|\varvec{X}_i \right) \frac{2\left( \varvec{X}_i-\sum _{\alpha =1}^q \varvec{c}_{\alpha } G\left( \varvec{y}_{0j}-\hat{\varvec{y}}_{0\alpha } \right) \right) }{2\sigma _j^2} \\&\quad \cdot \left( -G\left( \varvec{y}_{0j}-\hat{\varvec{y}}_{0r} \right) \right) \\= & {} \sum _{i=1}^N \sum _{j=1}^M \phi _j \left( \varvec{y}_{old}|\varvec{X}_i \right) \frac{-\varvec{X}_i+\sum _{\alpha =1}^q \varvec{c}_{\alpha }G\left( \varvec{y}_{0j}-\hat{\varvec{y}}_{0\alpha } \right) }{\sigma _j^2}\\&\quad \cdot G\left( \varvec{y}_{0j}-\hat{\varvec{y}}_{0r} \right) \\= & {} \sum _{i=1}^N \sum _{j=1}^M \frac{\phi _j \left( \varvec{y}_{old}|\varvec{X}_i \right) \sum _{\alpha =1}^q \varvec{c}_{\alpha } G\left( \varvec{y}_{0j}-\hat{\varvec{y}}_{0\alpha } \right) }{\sigma _j^2} \\&\quad G\left( \varvec{y}_{0j}-\hat{\varvec{y}}_{0r} \right) - \sum _{i=1}^N \sum _{j=1}^M \frac{\phi _j \left( \varvec{y}_{old}|\varvec{X}_i \right) }{\sigma _j^2} \\&\quad \varvec{X}_i G\left( \varvec{y}_{0j}-\hat{\varvec{y}}_{0r} \right) \\= & {} \frac{1}{\sigma ^2} \sum _{j=1}^M \left( \sum _{i=1}^N \frac{\phi _j \left( \varvec{y}_{old}|\varvec{X}_i \right) }{\left( \sigma _j/\sigma \right) ^2} \right) \sum _{\alpha =1}^q \varvec{c}_{\alpha } G\left( \varvec{y}_{0j}-\hat{\varvec{y}}_{0\alpha } \right) \\&\quad \cdot G\left( \varvec{y}_{0j}-\hat{\varvec{y}}_{0r} \right) \\&-\frac{1}{\sigma ^2} \sum _{j=1}^M \frac{\sum _{i=1}^N \phi _j\left( \varvec{y}_{old}|\varvec{X}_i \right) \varvec{X}_i}{\left( \sigma _j/\sigma \right) ^2} G\left( \varvec{y}_{0j}-\hat{\varvec{y}}_{0r} \right) \\= & {} \frac{1}{\sigma ^2} \sum _{j=1}^M G\left( \hat{\varvec{y}}_{0r}-\varvec{y}_{0j} \right) diag \left( \tilde{\varvec{\varPhi }}\varvec{1} \right) \varvec{G}\left( j,: \right) \varvec{C}\\&\quad - \frac{1}{\sigma ^2} \sum _{j=1}^M G\left( \hat{\varvec{y}}_{0r}-\varvec{y}_{0j} \right) \left( \tilde{\varvec{\varPhi }} \varvec{X} \right) \\= & {} \frac{1}{\sigma ^2} \varvec{G}^T \left( r,: \right) diag\left( \tilde{\varvec{\varPhi }}\varvec{1} \right) \varvec{G}\varvec{C}\\&\quad - \frac{1}{\sigma ^2} \varvec{G}^T\left( r,: \right) \left( \tilde{\varvec{\varPhi }}\varvec{X} \right) \end{aligned}$$

Therefore, the derivative of the first term with respect to \(\varvec{C}\) matrix is,

$$\begin{aligned}&\frac{\partial }{\partial \varvec{C}} \sum _{i=1}^N \sum _{j=1}^M \phi _j \left( \varvec{y}_{old}|\varvec{X}_i \right) \frac{\left\| \varvec{X}_i -\sum _{\alpha =1}^q \varvec{c}_{\alpha } G\left( \varvec{y}_{0j}-\hat{\varvec{y}}_{0\alpha } \right) \right\| ^2}{2\sigma _j^2} \nonumber \\&\frac{1}{\sigma ^2} \left[ \varvec{G}^T diag \left( \tilde{\varvec{\varPhi }}\varvec{1} \right) \varvec{G}\varvec{C} - \varvec{G}^T \left( \tilde{\varvec{\varPhi }}\varvec{X} \right) \right] \end{aligned}$$
(31)

The derivative of second term with respect to \(\varvec{C}\) can be shown as indices form,

$$\begin{aligned}&\frac{\partial }{\partial \varvec{C}} \mathbf{Tr} \left( \varvec{C}^T \varvec{g} \varvec{C} \right) \\&\quad = \frac{\partial }{\partial C_{\gamma k}} \left( C_{\alpha j} g_{\alpha \beta } C_{\beta j} \right) \\&\quad = \delta _{\alpha \gamma } \delta _{jk} g_{\alpha \beta } C_{\beta j} + C_{\alpha j} g_{\alpha \beta } \delta _{\gamma \beta } \delta _{jk}\\&\quad = g_{\gamma \beta } C_{\beta k} + C_{\alpha k} g_{\alpha \gamma } = \varvec{g} \varvec{C} + \varvec{C}^T \varvec{g} = 2\varvec{g} \varvec{C} \end{aligned}$$

Sum the two terms above together to have,

$$\begin{aligned} \frac{{\tilde{Q}}}{\varvec{C}}&= \varvec{G}^T diag \left( \tilde{\varvec{\varPhi }}\varvec{1} \right) \varvec{G}\varvec{C} \\&\quad - \varvec{G}^T \left( \tilde{\varvec{\varPhi }}\varvec{X} \right) + 2\sigma ^2 \lambda \varvec{g} \varvec{C} = \varvec{0} \end{aligned}$$

so that the matrix \(\varvec{C}\) can be obtained

$$\begin{aligned} \varvec{C} = \left[ \varvec{G}^T diag\left( \tilde{\varvec{\varPhi }}\varvec{1} \right) \varvec{G} + 2\sigma ^2 \lambda \varvec{g} \right] ^{-1} \varvec{G}^T \left( \tilde{\varvec{\varPhi }} \varvec{X} \right) \end{aligned}$$
(32)

in which, \(\varvec{G}\) is a \(M\times q\) matrix, \(\tilde{\varvec{\varPhi }}\) is a \(M \times N\) matrix, \(\varvec{1}\) is a \(N \times 1\) vector, \(\varvec{C}\) is a \(q \times d\) matrix, \(\varvec{X}\) is a \(N \times d\) matrix and \(\varvec{g}\) is a \(q \times q\) matrix.

Appendix D. The brief outline to Coherent Point Drift algorithm

First of all, for convenience of the presentation, we introduce the following notations:

  • N - the number of target point sets

  • M - the number of source point sets

  • D - the dimension of the space where a point exists

  • \({\mathbf {X}} = \left( x_1^1, x_1^2, \cdots , x_1^D, \cdots , x_N^1, x_N^2, \cdots , x_N^D \right) ^T\) - target point set

  • \({\mathbf {Y}} = \left( y_1^1, y_1^2, \cdots , y_1^D, \cdots , y_M^1, y_M^2, \cdots , y_M^D \right) ^T\) - source point set

  • \({\mathcal {T}}\) - mapping function transforming the shape represented by \({\mathbf {Y}}\) to the shape represented by \({\mathbf {X}}\)

  • \(\sigma ^2 I_D\) - covariance matrix with D-dimension

Then a component of Gaussian mixture model, as basis of the CPD method, is defined as follows,

$$\begin{aligned} p\left( {\mathbf {x}}_n|{\mathbf {y}}_m, \sigma ^2 \right) = |2\pi \sigma ^2 I_D|^{-1/2} \exp \left\{ -\frac{1}{2\sigma ^2} \left\| {\mathbf {x}}_n - {\mathcal {T}}\left( {\mathbf {y}}_m \right) \right\| ^2 \right\} \end{aligned}$$

in which, \({\mathcal {T}}\left( \varvec{Y} \right) \) is assumed as expectation of the Gaussian mixture model and a target point \({\mathbf {x}}_n\) is the data point produced from the Gaussian mixture model.

Therefore, after considering outlier points distribution and all components, a complete Gaussian mixture model is defined as follows,

$$\begin{aligned} p\left( {\mathbf {x}}_n; \sigma ^2 \right) = wp_{out}\left( {\mathbf {x}}_n \right) + \left( 1-w \right) \sum _{m=1}^M \frac{1}{M} p\left( {\mathbf {x}}_n | {\mathbf {y}}_m, \sigma ^2 \right) \end{aligned}$$
(33)

in which, w is the probability of an outlier appearance.

Then the EM algorithm is applied to find out the local minimum of the negative likelihood of the Guassian mixture model. Two iterative steps are conducted:

  • Computation of the probability of \(p_{mn}\) between \({\mathbf {x}}_n\) and \({\mathbf {y}}_m\)

  • Minimization of an objective function Q in terms of \(p_{mn}\)

The Q-function is defined as

$$\begin{aligned} Q = \frac{{\hat{N}}D}{2} \ln \sigma ^2 + \frac{1}{2\sigma ^2} \sum _{n=1}^N \sum _{m=1}^M p_{mn} \left\| {\mathbf {x}}_n - {\mathcal {T}}\left( {\mathbf {y}}_m \right) \right\| ^2 \end{aligned}$$
(34)

in which \({\hat{N}} = \sum _{n=1}^N \sum _{m=1}^M p_{mn}\) and

$$\begin{aligned} p_{mn} = \frac{\exp \left( -\frac{1}{2\sigma ^2}\left\| {\mathbf {x}}_n - {\mathcal {T}}\left( {\mathbf {y}}_m \right) \right\| ^2 \right) }{\frac{w}{1-w} \frac{M}{N} |2\pi \sigma ^2 I_D|^{1/2} + \sum _{k=1}^K \exp \left( -\frac{1}{2\sigma ^2} \left\| {\mathbf {x}}_n - {\mathbf {y}}_k \right\| ^2 \right) } \end{aligned}$$

The complete derivation and some intermediate formulas can be found in Ref. [32].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Li, S., Wu, C.T. et al. A generalized Bayesian regularization network approach on characterization of geometric defects in lattice structures for topology optimization in preliminary design of 3D printing. Comput Mech 69, 1191–1212 (2022). https://doi.org/10.1007/s00466-021-02137-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-021-02137-8

Keywords