Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Joint probability of precipitation and reservoir storage for drought estimation in the headwater basin of the Huaihe River, China

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Reservoir storage plays an important role in water supply during the dry season when precipitation is insufficient. In a watershed where the streams are controlled by reservoirs, drought occurrences depend on not only precipitation variations but also reservoir regulation. In this study, the joint dependence structure of the reservoir storage and its relevant variables of precipitation and/or upstream outflow were analyzed for two cascade reservoirs in a headwater basin of the Huaihe River, China. Correlation analysis indicates that the reservoir storage in October (the end of the wet season) depends highly on the regional precipitation at time scales of several months, e.g., 7 months for the upstream and 9 months for the downstream. Additionally, the downstream storage is correlated with outflow from the upstream reservoir at the 5-month timescale significantly. For estimation of the joint probability of pairs of the storage and its relevant variables, univariate marginal distributions and bivariate copula were appropriately selected in terms of statistical tests. The bivariate return period of \(T(X < x,Y < y)\) and \(T(X \le x,Y \ge y)\) and the conditional probability of \(P(Y \ge y|X \le x)\) were estimated by using the selected Clayton copula. The results from contour lines of the bivariate return period demonstrate that the probability of drought occurrences affected by both reservoir storage and precipitation/outflow is smaller than that by either of the variables. Meanwhile, the concurrent drought probability between precipitation and reservoir storage in the upstream is higher than that in the downstream. The estimated conditional probability offers useful information on how much the regular storage could be remained under some specified drought levels of precipitation/upstream outflow. Therefore, the results are helpful for improving the operation strategies of the cascade reservoirs for the adaptive management of drought under different climate variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adler J, Parmryd I (2010) Quantifying colocalization by correlation: the Pearson correlation coefficient is superior to the Mander’s overlap coefficient. Cytom Part A 77A:733–742. doi:10.1002/cyto.a.20896

    Article  Google Scholar 

  • Aghakouchak A, Ciach G, Habib E (2010) Estimation of tail dependence coefficient in rainfall accumulation fields. Adv Water Resour 33:1142–1149. doi:10.1016/j.advwatres.2010.07.003

    Article  Google Scholar 

  • Agresti A (2010) Analysis of ordinal categorical data, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Aissia MAB, Chebana F, Ouarda TBMJ, Roy L, Desrochers G, Chartier I, Robichaud É (2012) Multivariate analysis of flood characteristics in a climate change context of the watershed of the Baskatong reservoir, Province of Québec, Canada. Hydrol Process 26(1):130–142. doi:10.1002/hyp.8117

    Article  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723. doi:10.1109/TAC.1974.1100705

    Article  Google Scholar 

  • Anderson TW, Darling DA (1952) Asymptotic theory of certain “goodness-of-fit” criteria based on stochastic processes. Ann Math Stat 23:193–212. doi:10.1214/aoms/1177729437

    Article  Google Scholar 

  • Ane T, Kharoubi C (2003) Dependence structure and risk measure. J Bus 76(3):411–438

    Article  Google Scholar 

  • Borroni CG (2013) A new rank correlation measure. Stat Pap 54(2):255–270. doi:10.1007/s00362-011-0423-0

    Article  Google Scholar 

  • Bozdogan H (2000) Akaike’s information criterion and recent developments in information complexity. J Math Psychol 44(1):62–91. doi:10.1006/jmps.1999.1277

    Article  Google Scholar 

  • Clayton DG (1978) A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika 65:141–151

    Article  Google Scholar 

  • Cook DR, Johnson ME (1981) A family of distributions for modeling non-elliptically symmetric multivariate data, Journal of the Royal Statistical Society. Ser B Methodol 43:210–218

    Google Scholar 

  • Deheuvels P (1979) La fonction de dépendance empirique et ses propriétés: Un test non paramétrique d’indépendance. Acad Roy Belgique Bull Cl Sci 65(6):274–292

    Google Scholar 

  • Dobric J, Schmid F (2005) Nonparametric estimation of the lower tail dependence lambda(L) in bivariate copulas. J Appl Stat 32(4):387–407. doi:10.1080/02664760500079217

    Article  Google Scholar 

  • Favre AC, El Adlouni S, Perreault L, Thiémonge N, Bobée B (2004) Multivariate hydrological frequency analysis using copulas. Water Resour Res 40:W01101

    Article  Google Scholar 

  • Frahm G, Junker M, Schmidt R (2005) Estimating the tail-dependence coefficient: properties and pitfalls. Insur Math Econ 37(1):80–100

    Article  Google Scholar 

  • Frank MJ (1979) On the simultaneous associativity of f(x, y) and x + y−f(x, y). Aequationes Math 19:194–226

    Article  Google Scholar 

  • Frank J, Masse J (1951) The Kolmogorov–Smirnov test for goodness of fit. J Am Stat Assoc 46(253):68–78

    Article  Google Scholar 

  • Gayen AK (1951) The frequency distribution of the product-moment correlation coefficient in random samples of any size drawn from non-normal universes. Biometrika 38:219–247. doi:10.2307/2332329

    Article  CAS  Google Scholar 

  • Genest C (1987) Frank’s family of bivariate distributions. Biometrika 74:549–555

    Article  Google Scholar 

  • Genest C, Favre AC (2007) Everything you always wanted to know about copula modeling but were afraid to ask. J Hydrol Eng 12(4):347–368

    Article  Google Scholar 

  • Genest C, Rivest LP (1993) Statistical inference procedures for bivariate Archimedean copulas. J Am Stat Assoc 88(423):1034–1043

    Article  Google Scholar 

  • Genest C, Ghoudi K, Rivest LP (1995) A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika 82(3):543–552

    Article  Google Scholar 

  • Gumbel EJ (1960) Bivariate exponential distributions. J Am Stat Assoc 55:698–707

    Article  Google Scholar 

  • Hougaard P (1986) A class of multivariate failure time distributions. Biometrika 73:671–678

    Google Scholar 

  • Hu WW, Wang GX, Deng W, Li SN (2008) The influence of dams on ecohydrological conditions in the Huaihe River basin, China. Ecol Eng 33(3):233–241

    Article  Google Scholar 

  • Janga Reddy M, Ganguli P (2012) Application of copulas for derivation of drought severity–duration–frequency curves. Hydrol Process 26:1672–1685. doi:10.1002/hyp.8287

    Article  Google Scholar 

  • Jaranilla-Sanchez PA, Wang L, Koike T (2011) Modeling the hydrologic responses of the Pampanga River basin, Philippines: a quantitative approach for identifying droughts. Water Resour Res. doi:10.1029/2010wr009702

    Google Scholar 

  • Jenkinson AF (1955) The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Q J R Meteorol Soc 87:158–171

    Article  Google Scholar 

  • Joe H (1997) Multivariate models and dependence concepts. Chapman and Hall, London

    Book  Google Scholar 

  • Johnson NL (1994) Continuous univariate distributions, vol 1. Wiley, New York

    Google Scholar 

  • Kendall MG (1938) A new measure of rank correlation. Biometrika 30:81–93. doi:10.1093/biomet/30.1-2.81

    Article  Google Scholar 

  • Kendall MG (1955) Rank correlation methods. Griffin, London

    Google Scholar 

  • Kendall M, Gibbons JD (1990) Rank correlation methods. Oxford University Press, New York

    Google Scholar 

  • Lee T, Modarres R, Ouarda T (2013) Data-based analysis of bivariate copula tail dependence for drought duration and severity. Hydrol Process 27(10):1454–1463

    Article  Google Scholar 

  • López-Moreno JI, Begueria S, Garcia-Ruiz JM (2004) The management of a large Mediterranean reservoir: storage regimens of the Yesa Reservoir, Upper Aragon River Basin, central Spanish Pyrenees. Environ Manag 34(4):508–515. doi:10.1007/s00267-003-0249-1

    Article  Google Scholar 

  • López-Moreno JI, Vicente-Serrano SM, Zabalza J, Beguería S, Lorenzo-Lacruz J, Azorin-Molina C, Morán-Tejeda E (2013) Hydrological response to climate variability at different time scales: a study in the Ebro basin. J Hydrol 477:175–188. doi:10.1016/j.jhydrol.2012.11.028

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th conference on applied climatology, vol 22. American Meteorological Society Boston, pp 179–183

  • Nelsen RB (1986) Properties of a one-parameter family of bivariate distribution with specified marginals. Commun Stat Theory Methods 15:3277–3285

    Article  Google Scholar 

  • Nelsen RB (1999) An introduction to copulas. Springer, New York

    Book  Google Scholar 

  • Oakes D (1982) A model fo association in bivariate survival data. J R Stat Soc Ser B 44:414–422

    Google Scholar 

  • Otieno H, Yang J, Liu W, Han D (2014) Influence of rain gauge density on interpolation method selection. J Hydrol Eng 19(11):04014024. doi:10.1061/(asce)he.1943-5584.0000964

    Article  Google Scholar 

  • Poulin A, Huard D, Favre AC, Pugin S (2007) Importance of tail dependence in bivariate frequency analysis. J Hydrol Eng 12:394–403. doi:10.1061/(Asce)1084-0699(2007)12:4(394)

    Article  Google Scholar 

  • Salvadori G, De Michele C (2004) Frequency analysis via copulas: theoretical aspects and applications to hydrological events. Water Resour Res. doi:10.1029/2004wr003133

    Google Scholar 

  • Shiau JT (2006) Fitting drought duration and severity with two-dimensional copulas. Water Resour Manag 20(5):795–815

    Article  Google Scholar 

  • Shiau JT, Modarres R (2009) Copula-based drought severity-duration-frequency analysis in Iran. Meteorol Appl 16(4):481–489

    Article  Google Scholar 

  • Shiau JT, Feng S, Nadarajah S (2007) Assessment of hydrological droughts for the Yellow River, China, using copulas. Hydrol Process 21(16):2157–2163. doi:10.1002/hyp.6400

    Article  Google Scholar 

  • Shiau JT, Modarres R, Nadarajah S (2012) Assessing multi-site drought connections in iran using empirical copula. Environ Model Assess 17(5):469–482. doi:10.1007/s10666-012-9318-2

    Article  Google Scholar 

  • Sklar A (1959) Fonctions de répartition á n dimensions et leurs marges, vol 8. Publications de l’Institut de Statistique de l’Université de Paris, Paris, pp 229–231

    Google Scholar 

  • Thiessen AH (1911) Precipitation averages for large areas. Mon Weather Rev 39(7):1082–1084

    Google Scholar 

  • Vicente-Serrano SM, López-Moreno JI (2005) Hydrological response to different time scales of climatological drought: an evaluation of the standardized precipitation index in a mountainous Mediterranean basin. Hydrol Earth Syst Sci Discuss 9(5):523–533

    Article  Google Scholar 

  • Wang X (2000) Characteristics analysis of rainfall in the upper reaches of the Shaying River Basin (in Chinese with English abstract). Hydrology 20(1):53–55

    Google Scholar 

  • Weibull W (1939) A statistical theory of the strength of material. Ingeniors Vetenskaps Akademiens, Stockholm 151

    Google Scholar 

  • Yevjevich V (1972) Probability and statistics in hydrology. Water Resources Publications, Fort Collins

    Google Scholar 

  • Zhang Y, Xia J, Liang T, Shao Q (2010) Impact of water projects on river flow regimes and water quality in Huai River Basin. Water Resour Manag 24(5):889–908

    Article  Google Scholar 

  • Zhang Q, Singh VP, Sun P, Chen X, Zhang Z, Li J (2011a) Precipitation and streamflow changes in China: changing patterns, causes and implications. J Hydrol 410(3–4):204–216

    Article  Google Scholar 

  • Zhang Y, Shao Q, Xia J, Bunn SE, Zuo Q (2011b) Changes of flow regimes and precipitation in Huai River Basin in the last half century. Hydrol Process 25(2):246–257

    Article  Google Scholar 

  • Zhang Q, Li J, Singh VP, Xu C-Y (2013) Copula-based spatio-temporal patterns of precipitation extremes in China. Int J Climatol 33(5):1140–1152. doi:10.1002/joc.3499

    Article  Google Scholar 

  • Zhang R, Chen X, Zhang Z, Shi P (2015) Evolution of hydrological drought under the regulation of two reservoirs in the headwater basin of the Huaihe River, China. Stoch Environ Res Risk Assess 29(2):487–499. doi:10.1007/s00477-014-0987-z

    Article  Google Scholar 

  • Zhou Y, Ma Z, Wang L (2002) Chaotic dynamics of the flood series in the Huaihe River Basin for the last 500 years. J Hydrol 258:100–110. doi:10.1016/S0022-1694(01)00561-3

    Article  Google Scholar 

Download references

Acknowledgments

The research is financially supported by the National Natural Science Foundation of China (Grant No. 51190090) and Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No. 1501061B). We thank the editor and two anonymous reviewers for their constructive comments on the earlier manuscript, which lead to an improvement of the paper. The manuscript was edited by Jiayi Chen from University of California, Los Angeles.

Funding

This study was funded by the National Natural Science Foundation of China (Grant No. 51190090) and Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No. 1501061B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Chen, X., Cheng, Q. et al. Joint probability of precipitation and reservoir storage for drought estimation in the headwater basin of the Huaihe River, China. Stoch Environ Res Risk Assess 30, 1641–1657 (2016). https://doi.org/10.1007/s00477-016-1249-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-016-1249-z

Keywords